Solveeit Logo

Question

Question: The sum of the series, $\frac{x}{1-x^2}+\frac{x^2}{1-x^4}+\frac{x^4}{1-x^8}+.....$ upto infinite ter...

The sum of the series, x1x2+x21x4+x41x8+.....\frac{x}{1-x^2}+\frac{x^2}{1-x^4}+\frac{x^4}{1-x^8}+..... upto infinite terms. If x<1|x|<1, is

A

x1x\frac{x}{1-x}

B

11x\frac{1}{1-x}

C

1+x1x\frac{1+x}{1-x}

D

1

Answer

x1x\frac{x}{1-x}

Explanation

Solution

Let the given series be SS. The general term of the series is Tn=x2n11x2nT_n = \frac{x^{2^{n-1}}}{1-x^{2^n}}.

We use the identity: A1A2=11A11A2\frac{A}{1-A^2} = \frac{1}{1-A} - \frac{1}{1-A^2}.

Applying this identity with A=x2n1A = x^{2^{n-1}}, we get: Tn=11x2n111x2nT_n = \frac{1}{1-x^{2^{n-1}}} - \frac{1}{1-x^{2^n}}.

Now, we write out the first few terms of the series: T1=x1x2=11x11x2T_1 = \frac{x}{1-x^2} = \frac{1}{1-x} - \frac{1}{1-x^2} T2=x21x4=11x211x4T_2 = \frac{x^2}{1-x^4} = \frac{1}{1-x^2} - \frac{1}{1-x^4} T3=x41x8=11x411x8T_3 = \frac{x^4}{1-x^8} = \frac{1}{1-x^4} - \frac{1}{1-x^8} ...

The sum of the series is S=T1+T2+T3+S = T_1 + T_2 + T_3 + \dots. This is a telescoping series.

The sum of the first NN terms, SNS_N, is: SN=(11x11x2)+(11x211x4)++(11x2N111x2N)S_N = \left(\frac{1}{1-x} - \frac{1}{1-x^2}\right) + \left(\frac{1}{1-x^2} - \frac{1}{1-x^4}\right) + \dots + \left(\frac{1}{1-x^{2^{N-1}}} - \frac{1}{1-x^{2^N}}\right) SN=11x11x2NS_N = \frac{1}{1-x} - \frac{1}{1-x^{2^N}}.

To find the sum to infinite terms, we take the limit as NN \to \infty.

Given x<1|x|<1, as NN \to \infty, x2N0x^{2^N} \to 0.

Therefore, S=limNSN=11x110=11x1S = \lim_{N \to \infty} S_N = \frac{1}{1-x} - \frac{1}{1-0} = \frac{1}{1-x} - 1.

S=1(1x)1x=x1xS = \frac{1 - (1-x)}{1-x} = \frac{x}{1-x}.