Solveeit Logo

Question

Question: The equation of the tangent to the curve \(y=4xe^x\) at \(\displaystyle\bigl(-1,\,-\tfrac{4}{e}\bigr...

The equation of the tangent to the curve y=4xexy=4xe^x at (1,4e)\displaystyle\bigl(-1,\,-\tfrac{4}{e}\bigr) is

A

x=1x = -1

B

xe4y=0x - \tfrac{e}{4}y = 0

C

y=4ey = -\tfrac{4}{e}

D

6xe4y=56x - \tfrac{e}{4}y = -5

Answer

y = -\tfrac{4}{e}

Explanation

Solution

  1. Compute the derivative:
y=4xexdydx=4ex+4xex=4ex(1+x).y = 4x e^x \quad\Longrightarrow\quad \frac{dy}{dx} =4e^x +4x e^x =4e^x(1+x).
  1. At x=1x=-1:
y(1)=4e1(11)=0,y'\bigl(-1\bigr) =4e^{-1}(1-1)=0,

so the tangent is horizontal.
3. The point is (1,4e)\bigl(-1,-\tfrac{4}{e}\bigr), so the equation is

y=4e.y = -\frac{4}{e}.