Solveeit Logo

Question

Question: Line L₁ is parallel to the line L₂. Slope of L₁ is $\frac{-1}{9}$. Also L₃ is parallel to L₄. Slope ...

Line L₁ is parallel to the line L₂. Slope of L₁ is 19\frac{-1}{9}. Also L₃ is parallel to L₄. Slope of L₄ is 125\frac{-1}{25}. All these lines touch the ellipse x225+y29=1\frac{x^2}{25}+\frac{y^2}{9}=1. Find the area of the parallelogram formed by these lines.

Answer

The area of the parallelogram is 5426012\frac{5\sqrt{42601}}{2}.

Explanation

Solution

The ellipse is x225+y29=1\frac{x^2}{25}+\frac{y^2}{9}=1, so a2=25a^2=25 and b2=9b^2=9. For lines with slope mm, the tangent condition is c2=a2m2+b2c^2 = a^2m^2 + b^2. For m1=19m_1 = -\frac{1}{9}: c12=25(19)2+9=2581+9=75481c_1^2 = 25\left(-\frac{1}{9}\right)^2 + 9 = \frac{25}{81} + 9 = \frac{754}{81}, so c1=±7549c_1 = \pm \frac{\sqrt{754}}{9}. The lines are x+9y754=0x+9y \mp \sqrt{754} = 0. For m2=125m_2 = -\frac{1}{25}: c22=25(125)2+9=125+9=22625c_2^2 = 25\left(-\frac{1}{25}\right)^2 + 9 = \frac{1}{25} + 9 = \frac{226}{25}, so c2=±2265c_2 = \pm \frac{\sqrt{226}}{5}. The lines are x+25y5226=0x+25y \mp 5\sqrt{226} = 0. The area of the parallelogram formed by a1x+b1y+d1=0a_1x+b_1y+d_1=0, a1x+b1y+d2=0a_1x+b_1y+d_2=0, a2x+b2y+d3=0a_2x+b_2y+d_3=0, a2x+b2y+d4=0a_2x+b_2y+d_4=0 is (d1d2)(d3d4)a1b2a2b1\frac{|(d_1-d_2)(d_3-d_4)|}{|a_1b_2-a_2b_1|}. Area = (754754)(52265226)12519=(2754)(10226)16=2075422616=57542264\frac{|(-\sqrt{754} - \sqrt{754})(-5\sqrt{226} - 5\sqrt{226})|}{|1 \cdot 25 - 1 \cdot 9|} = \frac{|(-2\sqrt{754})(-10\sqrt{226})|}{16} = \frac{20\sqrt{754 \cdot 226}}{16} = \frac{5\sqrt{754 \cdot 226}}{4}. 754226=(2377)(2113)=442601754 \cdot 226 = (2 \cdot 377)(2 \cdot 113) = 4 \cdot 42601. Area = 54426014=52426014=10426014=5426012\frac{5\sqrt{4 \cdot 42601}}{4} = \frac{5 \cdot 2\sqrt{42601}}{4} = \frac{10\sqrt{42601}}{4} = \frac{5\sqrt{42601}}{2}.