Solveeit Logo

Question

Question: Let $f(x) = 3x^{10}-7x^8+5x^6-21x^3+3x^2-7$ $265 \left( \lim\limits_{h \to 0} \frac{h^4+3h^2}{(f(1-...

Let f(x)=3x107x8+5x621x3+3x27f(x) = 3x^{10}-7x^8+5x^6-21x^3+3x^2-7

265(limh0h4+3h2(f(1h)f(1))sin5h)=265 \left( \lim\limits_{h \to 0} \frac{h^4+3h^2}{(f(1-h)-f(1)) \sin 5h} \right) =

A

1

B

2

C

3

D

-3

Answer

3

Explanation

Solution

The given expression is 265(limh0h4+3h2(f(1h)f(1))sin5h)265 \left( \lim\limits_{h \to 0} \frac{h^4+3h^2}{(f(1-h)-f(1)) \sin 5h} \right). Let's evaluate the limit part: L=limh0h4+3h2(f(1h)f(1))sin5hL = \lim\limits_{h \to 0} \frac{h^4+3h^2}{(f(1-h)-f(1)) \sin 5h}.

As h0h \to 0, the numerator h4+3h204+3(0)2=0h^4+3h^2 \to 0^4+3(0)^2 = 0. As h0h \to 0, 1h11-h \to 1, so f(1h)f(1)f(1-h) \to f(1). Thus, the term f(1h)f(1)0f(1-h)-f(1) \to 0. Also, as h0h \to 0, sin5hsin(0)=0\sin 5h \to \sin(0) = 0. The limit is of the indeterminate form 00\frac{0}{0}.

We can rewrite the expression to use the definition of the derivative f(a)=limxaf(x)f(a)xaf'(a) = \lim\limits_{x \to a} \frac{f(x)-f(a)}{x-a}. Let's consider the term f(1h)f(1)f(1-h)-f(1). Let x=1hx = 1-h. As h0h \to 0, x1x \to 1. Then f(1h)f(1)=f(x)f(1)f(1-h)-f(1) = f(x)-f(1). The denominator difference is (1h)1=h(1-h)-1 = -h. So, limh0f(1h)f(1)h=limx1f(x)f(1)x1=f(1)\lim\limits_{h \to 0} \frac{f(1-h)-f(1)}{-h} = \lim\limits_{x \to 1} \frac{f(x)-f(1)}{x-1} = f'(1). Therefore, for small hh, f(1h)f(1)hf(1)f(1-h)-f(1) \approx -h f'(1).

We also use the standard limit limx0sinxx=1\lim\limits_{x \to 0} \frac{\sin x}{x} = 1. For small hh, sin5h5h\sin 5h \approx 5h.

Let's rewrite the limit expression by dividing the numerator and denominator by appropriate powers of hh: L=limh0h2(h2+3)(f(1h)f(1))sin5hL = \lim\limits_{h \to 0} \frac{h^2(h^2+3)}{(f(1-h)-f(1)) \sin 5h} L=limh0h2(h2+3)(f(1h)f(1)h)(h)(sin5h5h)(5h)L = \lim\limits_{h \to 0} \frac{h^2(h^2+3)}{\left(\frac{f(1-h)-f(1)}{-h}\right) (-h) \left(\frac{\sin 5h}{5h}\right) (5h)} L=limh0h2(h2+3)(5h2)(f(1h)f(1)h)(sin5h5h)L = \lim\limits_{h \to 0} \frac{h^2(h^2+3)}{(-5h^2) \left(\frac{f(1-h)-f(1)}{-h}\right) \left(\frac{\sin 5h}{5h}\right)} For h0h \neq 0, we can cancel h2h^2 from the numerator and denominator: L=limh0h2+35(f(1h)f(1)h)(sin5h5h)L = \lim\limits_{h \to 0} \frac{h^2+3}{-5 \left(\frac{f(1-h)-f(1)}{-h}\right) \left(\frac{\sin 5h}{5h}\right)}

Now, we evaluate the limit of each part as h0h \to 0: limh0(h2+3)=02+3=3\lim\limits_{h \to 0} (h^2+3) = 0^2+3 = 3. limh0f(1h)f(1)h=f(1)\lim\limits_{h \to 0} \frac{f(1-h)-f(1)}{-h} = f'(1) by the definition of the derivative. limh0sin5h5h=1\lim\limits_{h \to 0} \frac{\sin 5h}{5h} = 1 by the standard limit.

So, the limit LL is: L=35f(1)1=35f(1)L = \frac{3}{-5 \cdot f'(1) \cdot 1} = \frac{3}{-5 f'(1)}.

Now we need to find f(1)f'(1). f(x)=3x107x8+5x621x3+3x27f(x) = 3x^{10}-7x^8+5x^6-21x^3+3x^2-7 The derivative f(x)f'(x) is: f(x)=ddx(3x10)ddx(7x8)+ddx(5x6)ddx(21x3)+ddx(3x2)ddx(7)f'(x) = \frac{d}{dx}(3x^{10}) - \frac{d}{dx}(7x^8) + \frac{d}{dx}(5x^6) - \frac{d}{dx}(21x^3) + \frac{d}{dx}(3x^2) - \frac{d}{dx}(7) f(x)=3(10x9)7(8x7)+5(6x5)21(3x2)+3(2x)0f'(x) = 3(10x^9) - 7(8x^7) + 5(6x^5) - 21(3x^2) + 3(2x) - 0 f(x)=30x956x7+30x563x2+6xf'(x) = 30x^9 - 56x^7 + 30x^5 - 63x^2 + 6x.

Now, evaluate f(1)f'(1): f(1)=30(1)956(1)7+30(1)563(1)2+6(1)f'(1) = 30(1)^9 - 56(1)^7 + 30(1)^5 - 63(1)^2 + 6(1) f(1)=3056+3063+6f'(1) = 30 - 56 + 30 - 63 + 6 f(1)=(30+30+6)(56+63)f'(1) = (30 + 30 + 6) - (56 + 63) f(1)=66119f'(1) = 66 - 119 f(1)=53f'(1) = -53.

Substitute the value of f(1)f'(1) into the limit expression: L=35(53)=3265L = \frac{3}{-5(-53)} = \frac{3}{265}.

The question asks for the value of 265×L265 \times L. 265×L=265×3265=3265 \times L = 265 \times \frac{3}{265} = 3.

The final answer is 3.