Solveeit Logo

Question

Question: If the value of $\lim_{x\to0}(2-\cos x\sqrt{\cos 2x})^{(\frac{x+2}{x^2})}$ is equal to $e^a$, then a...

If the value of limx0(2cosxcos2x)(x+2x2)\lim_{x\to0}(2-\cos x\sqrt{\cos 2x})^{(\frac{x+2}{x^2})} is equal to eae^a, then a is equal to

Answer

3

Explanation

Solution

The given limit is of the form limx0(2cosxcos2x)(x+2x2)\lim_{x\to0}(2-\cos x\sqrt{\cos 2x})^{(\frac{x+2}{x^2})}.

Let f(x)=2cosxcos2xf(x) = 2-\cos x\sqrt{\cos 2x} and g(x)=x+2x2g(x) = \frac{x+2}{x^2}.

As x0x \to 0: f(x)2cos(0)cos(0)=211=21=1f(x) \to 2 - \cos(0)\sqrt{\cos(0)} = 2 - 1 \cdot \sqrt{1} = 2 - 1 = 1. g(x)0+202=20g(x) \to \frac{0+2}{0^2} = \frac{2}{0} \to \infty.

This is an indeterminate form of type 11^\infty. For limits of the form limxa[f(x)]g(x)\lim_{x\to a} [f(x)]^{g(x)} which are 11^\infty, we use the formula: L=elimxag(x)[f(x)1]L = e^{\lim_{x\to a} g(x)[f(x)-1]} In this case, f(x)1=(2cosxcos2x)1=1cosxcos2xf(x)-1 = (2-\cos x\sqrt{\cos 2x}) - 1 = 1-\cos x\sqrt{\cos 2x}. So, the exponent is A=limx0x+2x2(1cosxcos2x)A = \lim_{x\to0} \frac{x+2}{x^2} (1-\cos x\sqrt{\cos 2x}). We can write this as: A=(limx0(x+2))(limx01cosxcos2xx2)A = \left(\lim_{x\to0} (x+2)\right) \cdot \left(\lim_{x\to0} \frac{1-\cos x\sqrt{\cos 2x}}{x^2}\right) The first limit is 0+2=20+2 = 2. Let's evaluate the second limit, H=limx01cosxcos2xx2H = \lim_{x\to0} \frac{1-\cos x\sqrt{\cos 2x}}{x^2}. As x0x \to 0, the numerator 1cos(0)cos(0)=11=01-\cos(0)\sqrt{\cos(0)} = 1-1=0, and the denominator 02=00^2=0. So, it is a 00\frac{0}{0} indeterminate form, and we can apply L'Hopital's Rule.

Let N(x)=1cosxcos2xN(x) = 1-\cos x\sqrt{\cos 2x}. Let D(x)=x2D(x) = x^2.

Differentiating N(x)N(x): N(x)=((sinx)cos2x+cosx12cos2x(sin2x2))N'(x) = - \left( (-\sin x)\sqrt{\cos 2x} + \cos x \cdot \frac{1}{2\sqrt{\cos 2x}} \cdot (-\sin 2x \cdot 2) \right) N(x)=sinxcos2x+cosxsin2xcos2xN'(x) = \sin x\sqrt{\cos 2x} + \frac{\cos x \sin 2x}{\sqrt{\cos 2x}} Using sin2x=2sinxcosx\sin 2x = 2\sin x \cos x: N(x)=sinxcos2x+cosx(2sinxcosx)cos2xN'(x) = \sin x\sqrt{\cos 2x} + \frac{\cos x (2\sin x \cos x)}{\sqrt{\cos 2x}} N(x)=sinx(cos2x+2cos2xcos2x)N'(x) = \sin x \left( \sqrt{\cos 2x} + \frac{2\cos^2 x}{\sqrt{\cos 2x}} \right) N(x)=sinx(cos2x+2cos2xcos2x)N'(x) = \sin x \left( \frac{\cos 2x + 2\cos^2 x}{\sqrt{\cos 2x}} \right) Using the identity cos2x=2cos2x1\cos 2x = 2\cos^2 x - 1, we have cos2x+2cos2x=(2cos2x1)+2cos2x=4cos2x1\cos 2x + 2\cos^2 x = (2\cos^2 x - 1) + 2\cos^2 x = 4\cos^2 x - 1. So, N(x)=sinx4cos2x1cos2xN'(x) = \sin x \frac{4\cos^2 x - 1}{\sqrt{\cos 2x}}.

Differentiating D(x)D(x): D(x)=2xD'(x) = 2x.

Now, apply L'Hopital's Rule: H=limx0N(x)D(x)=limx0sinx4cos2x1cos2x2xH = \lim_{x\to0} \frac{N'(x)}{D'(x)} = \lim_{x\to0} \frac{\sin x \frac{4\cos^2 x - 1}{\sqrt{\cos 2x}}}{2x} H=limx0(sinxx)12(4cos2x1cos2x)H = \lim_{x\to0} \left(\frac{\sin x}{x}\right) \cdot \frac{1}{2} \cdot \left(\frac{4\cos^2 x - 1}{\sqrt{\cos 2x}}\right) We know that limx0sinxx=1\lim_{x\to0} \frac{\sin x}{x} = 1. Substitute x=0x=0 into the remaining terms: H=1124cos2(0)1cos(0)H = 1 \cdot \frac{1}{2} \cdot \frac{4\cos^2(0) - 1}{\sqrt{\cos(0)}} H=124(1)211=12411=123=32H = \frac{1}{2} \cdot \frac{4(1)^2 - 1}{\sqrt{1}} = \frac{1}{2} \cdot \frac{4-1}{1} = \frac{1}{2} \cdot 3 = \frac{3}{2} Now, substitute this value of HH back into the expression for AA: A=2H=232=3A = 2 \cdot H = 2 \cdot \frac{3}{2} = 3 Therefore, the original limit L=eA=e3L = e^A = e^3. Given that L=eaL = e^a, we have ea=e3e^a = e^3. Thus, a=3a=3.