Solveeit Logo

Question

Question: $\frac{1}{log_{\sqrt{bc}} abc}+\frac{1}{log_{\sqrt{ca}} abc}+\frac{1}{log_{\sqrt{ab}} abc}$ has the ...

1logbcabc+1logcaabc+1logababc\frac{1}{log_{\sqrt{bc}} abc}+\frac{1}{log_{\sqrt{ca}} abc}+\frac{1}{log_{\sqrt{ab}} abc} has the value equal to-

A

1/2

B

1

C

2

D

4

Answer

1

Explanation

Solution

Using the property 1logxy=logyx\frac{1}{log_x y} = log_y x, the expression becomes logabcbc+logabcca+logabcablog_{abc} \sqrt{bc} + log_{abc} \sqrt{ca} + log_{abc} \sqrt{ab}. Using logbx+logby+logbz=logb(xyz)log_b x + log_b y + log_b z = log_b (xyz), this simplifies to logabc(bccaab)log_{abc} (\sqrt{bc} \cdot \sqrt{ca} \cdot \sqrt{ab}). The argument simplifies to a2b2c2=abc\sqrt{a^2 b^2 c^2} = abc. Thus, the expression is logabcabc=1log_{abc} abc = 1.