Solveeit Logo

Question

Question: Evaluate: $\left\{\left(\frac{1}{\sqrt{27}}\right)^{2-\left[\left(\log_5 13\right)/\left(2\log_5 9\r...

Evaluate: {(127)2[(log513)/(2log59)]}1/2\left\{\left(\frac{1}{\sqrt{27}}\right)^{2-\left[\left(\log_5 13\right)/\left(2\log_5 9\right)\right]}\right\}^{1/2}

Answer

The evaluated expression is 33/2×133/163^{-3/2} \times 13^{3/16}.

Explanation

Solution

  1. Simplify the base: 127=33/2\frac{1}{\sqrt{27}} = 3^{-3/2}.
  2. Simplify the exponent term log5132log59\frac{\log_5 13}{2\log_5 9}:
    • 2log59=log592=log5812\log_5 9 = \log_5 9^2 = \log_5 81.
    • log513log581=log8113\frac{\log_5 13}{\log_5 81} = \log_{81} 13 (using change of base).
  3. The exponent of the base is 2log81132 - \log_{81} 13.
  4. The expression becomes {(33/2)2log8113}1/2\left\{(3^{-3/2})^{2 - \log_{81} 13}\right\}^{1/2}.
  5. Apply exponent rules: (am)n=amn(a^m)^n = a^{mn}:
    • 3(3/2)×12×(2log8113)=334(2log8113)3^{(-3/2) \times \frac{1}{2} \times (2 - \log_{81} 13)} = 3^{-\frac{3}{4}(2 - \log_{81} 13)}.
  6. Expand the exponent: 332+34log8113=33/2×334log81133^{-\frac{3}{2} + \frac{3}{4}\log_{81} 13} = 3^{-3/2} \times 3^{\frac{3}{4}\log_{81} 13}.
  7. Simplify 334log81133^{\frac{3}{4}\log_{81} 13}:
    • 34log8113=34×log313log381=34×log3134=316log313\frac{3}{4}\log_{81} 13 = \frac{3}{4} \times \frac{\log_3 13}{\log_3 81} = \frac{3}{4} \times \frac{\log_3 13}{4} = \frac{3}{16}\log_3 13.
    • 3316log313=3log3133/16=133/163^{\frac{3}{16}\log_3 13} = 3^{\log_3 13^{3/16}} = 13^{3/16}.
  8. The final evaluated form is 33/2×133/163^{-3/2} \times 13^{3/16}.