Solveeit Logo

Question

Question: (a + 2) sin $\alpha$ + (2a - 1) cos $\alpha$ = (2a + 1) if tan $\alpha$ = ...

(a + 2) sin α\alpha + (2a - 1) cos α\alpha = (2a + 1) if tan α\alpha =

A

34\frac{3}{4}

B

43\frac{4}{3}

C

2aa2+1\frac{2a}{a^2+1}

D

2aa21\frac{2a}{a^2-1}

Answer

43\frac{4}{3}

Explanation

Solution

The given equation is (a+2)sinα+(2a1)cosα=(2a+1)(a + 2) \sin \alpha + (2a - 1) \cos \alpha = (2a + 1).

We can solve this equation by using the tangent half-angle substitution: Let t=tan(α/2)t = \tan(\alpha/2). Then sinα=2t1+t2\sin \alpha = \frac{2t}{1 + t^2} and cosα=1t21+t2\cos \alpha = \frac{1 - t^2}{1 + t^2}.

Substitute these into the given equation: (a+2)(2t1+t2)+(2a1)(1t21+t2)=(2a+1)(a + 2) \left(\frac{2t}{1 + t^2}\right) + (2a - 1) \left(\frac{1 - t^2}{1 + t^2}\right) = (2a + 1)

Multiply both sides by (1+t2)(1 + t^2) to clear the denominators: 2t(a+2)+(2a1)(1t2)=(2a+1)(1+t2)2t(a + 2) + (2a - 1)(1 - t^2) = (2a + 1)(1 + t^2)

Expand the terms: 2at+4t+2a2at21+t2=2a+2at2+1+t22at + 4t + 2a - 2at^2 - 1 + t^2 = 2a + 2at^2 + 1 + t^2

Rearrange the terms to form a quadratic equation in tt: Collect t2t^2 terms: 2at2+t22at2t2=4at2-2at^2 + t^2 - 2at^2 - t^2 = -4at^2 Collect tt terms: 2at+4t=(2a+4)t2at + 4t = (2a + 4)t Collect constant terms: 2a12a1=22a - 1 - 2a - 1 = -2

So the equation becomes: 4at2+(2a+4)t2=0-4at^2 + (2a + 4)t - 2 = 0 Divide by -2: 2at2(a+2)t+1=02at^2 - (a + 2)t + 1 = 0

This is a quadratic equation in tt. We can solve for tt using the quadratic formula t=b±b24ac2at = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}: t=((a+2))±((a+2))24(2a)(1)2(2a)t = \frac{-(-(a+2)) \pm \sqrt{(-(a+2))^2 - 4(2a)(1)}}{2(2a)} t=a+2±(a+2)28a4at = \frac{a+2 \pm \sqrt{(a+2)^2 - 8a}}{4a} t=a+2±a2+4a+48a4at = \frac{a+2 \pm \sqrt{a^2 + 4a + 4 - 8a}}{4a} t=a+2±a24a+44at = \frac{a+2 \pm \sqrt{a^2 - 4a + 4}}{4a} t=a+2±(a2)24at = \frac{a+2 \pm \sqrt{(a-2)^2}}{4a} t=a+2±a24at = \frac{a+2 \pm |a-2|}{4a}

This gives two possible values for tt:

  1. t1=a+2+(a2)4at_1 = \frac{a+2 + (a-2)}{4a} (assuming a20a-2 \ge 0, i.e., a2a \ge 2) t1=2a4a=12t_1 = \frac{2a}{4a} = \frac{1}{2}
  2. t2=a+2(a2)4at_2 = \frac{a+2 - (a-2)}{4a} (assuming a20a-2 \ge 0, i.e., a2a \ge 2) t2=44a=1at_2 = \frac{4}{4a} = \frac{1}{a}

If a2<0a-2 < 0, i.e., a<2a < 2, then a2=(a2)=2a|a-2| = -(a-2) = 2-a.

  1. t1=a+2+(2a)4a=44a=1at_1 = \frac{a+2 + (2-a)}{4a} = \frac{4}{4a} = \frac{1}{a}
  2. t2=a+2(2a)4a=a+22+a4a=2a4a=12t_2 = \frac{a+2 - (2-a)}{4a} = \frac{a+2 - 2 + a}{4a} = \frac{2a}{4a} = \frac{1}{2}

So, the two possible values for t=tan(α/2)t = \tan(\alpha/2) are 12\frac{1}{2} and 1a\frac{1}{a}.

Now we find tanα\tan \alpha using the formula tanα=2t1t2\tan \alpha = \frac{2t}{1 - t^2}:

Case 1: If t=12t = \frac{1}{2} tanα=2(1/2)1(1/2)2=111/4=13/4=43\tan \alpha = \frac{2(1/2)}{1 - (1/2)^2} = \frac{1}{1 - 1/4} = \frac{1}{3/4} = \frac{4}{3}

Case 2: If t=1at = \frac{1}{a} tanα=2(1/a)1(1/a)2=2/a11/a2=2/aa21a2=2aa2a21=2aa21\tan \alpha = \frac{2(1/a)}{1 - (1/a)^2} = \frac{2/a}{1 - 1/a^2} = \frac{2/a}{\frac{a^2 - 1}{a^2}} = \frac{2}{a} \cdot \frac{a^2}{a^2 - 1} = \frac{2a}{a^2 - 1}

We have two potential solutions for tanα\tan \alpha: 43\frac{4}{3} and 2aa21\frac{2a}{a^2 - 1}. Let's check which of these solutions are valid by substituting them back into the original equation.

For tanα=43\tan \alpha = \frac{4}{3}: If tanα=43\tan \alpha = \frac{4}{3}, then we can have sinα=45,cosα=35\sin \alpha = \frac{4}{5}, \cos \alpha = \frac{3}{5} (for α\alpha in Q1) or sinα=45,cosα=35\sin \alpha = -\frac{4}{5}, \cos \alpha = -\frac{3}{5} (for α\alpha in Q3).

Substitute sinα=45\sin \alpha = \frac{4}{5} and cosα=35\cos \alpha = \frac{3}{5} into the original equation: (a+2)(45)+(2a1)(35)=2a+1(a+2)\left(\frac{4}{5}\right) + (2a-1)\left(\frac{3}{5}\right) = 2a+1 4a+85+6a35=2a+1\frac{4a+8}{5} + \frac{6a-3}{5} = 2a+1 10a+55=2a+1\frac{10a+5}{5} = 2a+1 2a+1=2a+12a+1 = 2a+1 This is true for all values of aa. Thus, tanα=43\tan \alpha = \frac{4}{3} is always a valid solution.

For tanα=2aa21\tan \alpha = \frac{2a}{a^2 - 1}: This value is option (D). The value 43\frac{4}{3} is option (B). Since this is a single choice question, and both solutions are mathematically derived and valid, there might be a specific condition on aa that makes them equivalent, or one is preferred. If the two solutions are equal: 43=2aa21\frac{4}{3} = \frac{2a}{a^2 - 1} 4(a21)=6a4(a^2 - 1) = 6a 4a24=6a4a^2 - 4 = 6a 4a26a4=04a^2 - 6a - 4 = 0 2a23a2=02a^2 - 3a - 2 = 0 Factoring the quadratic: (2a+1)(a2)=0(2a+1)(a-2) = 0 This implies a=2a = 2 or a=12a = -\frac{1}{2}. If a=2a=2, then tanα=2(2)221=43\tan \alpha = \frac{2(2)}{2^2-1} = \frac{4}{3}. So both solutions are identical. If a=1/2a=-1/2, then tanα=2(1/2)(1/2)21=11/41=13/4=43\tan \alpha = \frac{2(-1/2)}{(-1/2)^2-1} = \frac{-1}{1/4-1} = \frac{-1}{-3/4} = \frac{4}{3}. So both solutions are identical.

Since the question asks for "if tan α\alpha =", it implies a unique value or a value that is always true. As tanα=43\tan \alpha = \frac{4}{3} is always a solution regardless of aa (as long as aa is such that the original expression is defined, which it is for any real aa), it is the most general answer. The option 2aa21\frac{2a}{a^2-1} depends on aa. In multiple choice questions, if a constant solution is derived that holds true for all values of the parameter, it is usually the intended answer unless specified otherwise.