Solveeit Logo

Question

Question: Let $a_1, a_2, a_3,...$ be a G.P. of increasing positive terms. If $a_1a_5 = 28$ and $a_2 + a_4 = 29...

Let a1,a2,a3,...a_1, a_2, a_3,... be a G.P. of increasing positive terms. If a1a5=28a_1a_5 = 28 and a2+a4=29a_2 + a_4 = 29, then a6a_6 is equal to:

A

628

B

812

C

526

D

784

Answer

784

Explanation

Solution

Let the GP be:
  a1=a,  a2=ar,  a3=ar2,  a_1 = a,\; a_2 = ar,\; a_3 = ar^2,\; \ldots

Given:

  1. a1a5=a(ar4)=a2r4=28a_1 \cdot a_5 = a \cdot (ar^4) = a^2 r^4 = 28                 (1)
  2. a2+a4=ar+ar3=ar(1+r2)=29a_2 + a_4 = ar + ar^3 = ar(1+r^2) = 29                (2)

Notice that a6=ar5a_6 = a r^5. Write

ar5=(ar)r4.a r^5 = (a r) r^4.

Thus, if we find ara r and r4r^4, we can get a6a_6.

Step 1: Express aa in terms of ara r.
Let A=arA = a r.
From (1):

a2r4=(Ar)2r4=A2r2=28r2=28A2.a^2 r^4 = \left(\frac{A}{r}\right)^2 r^4 = A^2 r^2 = 28 \quad \Longrightarrow \quad r^2 = \frac{28}{A^2}.

Step 2: Substitute in (2):

A(1+r2)=29A(1+28A2)=29.A(1 + r^2) = 29 \quad \Longrightarrow \quad A\left(1 + \frac{28}{A^2}\right) = 29.

This becomes:

A+28A=29.A + \frac{28}{A} = 29.

Multiplying both sides by AA:

A229A+28=0.A^2 - 29A + 28 = 0.

The quadratic factors as:

(A1)(A28)=0.(A-1)(A-28)=0.

Since the GP is increasing (r>1r>1) the common ratio must be r>1r>1; taking A=ar=1A=a r=1 leads to a very large rr (as seen below) while the other possibility gives a decreasing sequence. Check using:

  • If A=1A = 1, then from r2=281r^2=\frac{28}{1} we get r=28=27r = \sqrt{28}=2\sqrt7 which is >1>1 and yields a=127a= \frac{1}{2\sqrt7}.
  • (The alternative A=28A=28 gives r2=28/282=128<1r^2=28/28^2=\frac1{28}<1, a decreasing sequence.)

So, choose A=1A=1.

Step 3: Now,

r2=28r4=(r2)2=(28)2=784.r^2=28 \quad \Longrightarrow \quad r^4=(r^2)^2 = (28)^2 =784.

Then,

a6=(ar)r4=1784=784.a_6 = (a r) \, r^4 = 1 \cdot 784 = 784.