Solveeit Logo

Question

Question: Two charges of equal magnitude 'q' are placed in air at a distance '2a' apart and charge '-2q' is pl...

Two charges of equal magnitude 'q' are placed in air at a distance '2a' apart and charge '-2q' is placed at midpoint. The potential energy of the system is (ϵ0\epsilon_0 = permittivity of free space)

A

-q28πϵ0a\frac{q^2}{8\pi \epsilon_0 a}

B

-3q28πϵ0a\frac{3q^2}{8\pi \epsilon_0 a}

C

-5q28πϵ0a\frac{5q^2}{8\pi \epsilon_0 a}

D

-7q28πϵ0a\frac{7q^2}{8\pi \epsilon_0 a}

Answer

-7q28πϵ0a\frac{7q^2}{8\pi \epsilon_0 a}

Explanation

Solution

The mutual potential energy is given by:

U=k[qq2a+q(2q)a+q(2q)a]U = k [ \frac{q \cdot q}{2a} + \frac{q \cdot (-2q)}{a} + \frac{q \cdot (-2q)}{a} ]

U=14πϵ0[q22a2q2a2q2a]U = \frac{1}{4\pi\epsilon_0} [ \frac{q^2}{2a} - \frac{2q^2}{a} - \frac{2q^2}{a} ]

U=14πϵ0[q22a4q2a]U = \frac{1}{4\pi\epsilon_0} [ \frac{q^2}{2a} - \frac{4q^2}{a} ]

U=14πϵ0[q28q22a]U = \frac{1}{4\pi\epsilon_0} [ \frac{q^2 - 8q^2}{2a} ]

U=7q28πϵ0aU = -\frac{7q^2}{8\pi\epsilon_0 a}