Solveeit Logo

Question

Question: Three charged particle A, B and C with charges -4q, 2q and -2q are present on the circumference of a...

Three charged particle A, B and C with charges -4q, 2q and -2q are present on the circumference of a circle of radius d. The charged particles A, C and centre O of the circle formed an equilateral triangle as shown in figure. Electric field at O along x-direction is:

A

23qπϵ0d2\frac{2\sqrt{3}q}{\pi\epsilon_0d^2}

B

3q4πϵ0d2\frac{\sqrt{3}q}{4\pi\epsilon_0d^2}

C

33q4πϵ0d2\frac{3\sqrt{3}q}{4\pi\epsilon_0d^2}

D

3qπϵ0d2\frac{\sqrt{3}q}{\pi\epsilon_0d^2}

Answer

33q4πϵ0d2\frac{3\sqrt{3}q}{4\pi\epsilon_0d^2}

Explanation

Solution

Let O be the origin (0, 0). The radius of the circle is d. The distance of each charge from O is d.

The electric field at the origin O due to a charge q at position r\vec{r} is given by E=14πϵ0qr2(r^)=14πϵ0qd2(rd)=14πϵ0qd3r\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{|\vec{r}|^2} (-\hat{r}) = \frac{1}{4\pi\epsilon_0} \frac{q}{d^2} (-\frac{\vec{r}}{d}) = -\frac{1}{4\pi\epsilon_0} \frac{q}{d^3} \vec{r}.

The x-component of the electric field at O is EOx=14πϵ0d2(qAcosθA+qBcosθB+qCcosθC)E_{Ox} = -\frac{1}{4\pi\epsilon_0d^2} (q_A \cos\theta_A + q_B \cos\theta_B + q_C \cos\theta_C).

Assuming OAC forms an equilateral triangle with side d and the x-axis is positioned symmetrically with respect to A and C. Let the angle of A be α-\alpha and the angle of C be α\alpha. Then the angle between OA and OC is 2α2\alpha. For AOC=60\angle AOC = 60^\circ, we have 2α=602\alpha = 60^\circ, so α=30\alpha = 30^\circ.

So, let θA=30\theta_A = -30^\circ and θC=30\theta_C = 30^\circ. B is on the positive y-axis, so θB=90\theta_B = 90^\circ.

Now calculate the x-component of the electric field at O using these angles: EOx=14πϵ0d2((4q)cos(30)+(2q)cos(90)+(2q)cos(30))E_{Ox} = -\frac{1}{4\pi\epsilon_0d^2} ((-4q) \cos(-30^\circ) + (2q) \cos(90^\circ) + (-2q) \cos(30^\circ)) EOx=q4πϵ0d2(432+20+(2)32)E_{Ox} = -\frac{q}{4\pi\epsilon_0d^2} (-4 \frac{\sqrt{3}}{2} + 2 \cdot 0 + (-2) \frac{\sqrt{3}}{2}) EOx=q4πϵ0d2(23+03)E_{Ox} = -\frac{q}{4\pi\epsilon_0d^2} (-2\sqrt{3} + 0 - \sqrt{3}) EOx=q4πϵ0d2(33)E_{Ox} = -\frac{q}{4\pi\epsilon_0d^2} (-3\sqrt{3}) EOx=33q4πϵ0d2E_{Ox} = \frac{3\sqrt{3}q}{4\pi\epsilon_0d^2}.