Solveeit Logo

Question

Question: 20 mL of a solution containing equal moles of Na₂CO₃ and NaHCO3 required 16 mL of 0.16 M HCI solutio...

20 mL of a solution containing equal moles of Na₂CO₃ and NaHCO3 required 16 mL of 0.16 M HCI solution to reach the phenolphthalein end point. What volume (in mL) of 0.1 MH2SO4 solution would have been required if methyl orange been used as an indicator from the beginning?

Answer

38.4 mL

Explanation

Solution

Here's how to solve this problem:

  1. Determine moles of CO₃²⁻ from phenolphthalein titration: 0.00256 moles.
    At the phenolphthalein end‐point, only the CO₃²⁻ in Na₂CO₃ is neutralized:

    CO32+H+HCO3\text{CO}_3^{2-} + \text{H}^+ \to \text{HCO}_3^-

    Given that 16 mL of 0.16 M HCl was used,

    x=0.016L×0.16M=0.00256 molesx = 0.016\,L \times 0.16\,M = 0.00256\text{ moles}
  2. Equal moles of NaHCO₃ are present.

  3. Total H⁺ moles needed = 2×0.00256 (for CO₃²⁻) + 0.00256 (for HCO₃⁻) = 0.00768 moles. When titrating with methyl orange, complete neutralization is required. The reactions are:

    Na2CO3+2H+2Na++H2O+CO2\text{Na}_2\text{CO}_3 + 2\text{H}^+ \to 2\text{Na}^+ + \text{H}_2\text{O} + \text{CO}_2 NaHCO3+H+Na++H2O+CO2\text{NaHCO}_3 + \text{H}^+ \to \text{Na}^+ + \text{H}_2\text{O} + \text{CO}_2

    Total moles of H⁺ required:

    0.00256×2from Na2CO3+0.00256×1from NaHCO3=0.00512+0.00256=0.00768 moles\underbrace{0.00256\times 2}_{\text{from Na}_2\text{CO}_3} + \underbrace{0.00256\times 1}_{\text{from NaHCO}_3} = 0.00512 + 0.00256 = 0.00768\text{ moles}
  4. Since 0.1 M H₂SO₄ gives 2 equivalents, moles H₂SO₄ = 0.00768/2 = 0.00384. In 0.1 M H₂SO₄, each mole supplies 2 moles of H⁺. Therefore, moles of H₂SO₄ needed:

    0.007682=0.00384 moles\frac{0.00768}{2} = 0.00384\text{ moles}
  5. Required volume = 0.00384/0.1 = 38.4 mL. Volume of 0.1 M H₂SO₄ required:

    Volume=0.00384 moles0.1M=0.0384L=38.4mL\text{Volume} = \frac{0.00384\text{ moles}}{0.1\,M} = 0.0384\,L = 38.4\,mL