Solveeit Logo

Question

Question: Let $y = y(t)$ be a solution to the differential equation $y' + 2ty = t^2$, then $16 \lim_{t\to\inft...

Let y=y(t)y = y(t) be a solution to the differential equation y+2ty=t2y' + 2ty = t^2, then 16limtyt16 \lim_{t\to\infty} \frac{y}{t} is:

A

8

B

16

C

24

D

2

Answer

8

Explanation

Solution

The given differential equation is a first-order linear differential equation of the form y+P(t)y=Q(t)y' + P(t)y = Q(t), where P(t)=2tP(t) = 2t and Q(t)=t2Q(t) = t^2.

Step 1: Find the integrating factor (IF). The integrating factor is given by IF=eP(t)dtIF = e^{\int P(t) dt}. IF=e2tdt=et2IF = e^{\int 2t dt} = e^{t^2}.

Step 2: Write the general solution. The general solution for a linear differential equation is yIF=Q(t)IFdt+Cy \cdot IF = \int Q(t) \cdot IF dt + C. Substituting the values: yet2=t2et2dt+Cy e^{t^2} = \int t^2 e^{t^2} dt + C So, y(t)=et2t2et2dt+Cet2y(t) = e^{-t^2} \int t^2 e^{t^2} dt + C e^{-t^2}.

Step 3: Evaluate the limit limtyt\lim_{t\to\infty} \frac{y}{t}. We need to find limtet2t2et2dt+Cet2t\lim_{t\to\infty} \frac{e^{-t^2} \int t^2 e^{t^2} dt + C e^{-t^2}}{t}. We can split this into two parts: limtet2t2et2dtt+limtCet2t\lim_{t\to\infty} \frac{e^{-t^2} \int t^2 e^{t^2} dt}{t} + \lim_{t\to\infty} \frac{C e^{-t^2}}{t}

The second term: limtCet2t=0\lim_{t\to\infty} \frac{C e^{-t^2}}{t} = 0, because et2e^{-t^2} approaches 0 much faster than tt approaches infinity.

For the first term, rewrite it as limtt2et2dttet2\lim_{t\to\infty} \frac{\int t^2 e^{t^2} dt}{t e^{t^2}}. This limit is of the indeterminate form \frac{\infty}{\infty}, so we can apply L'Hopital's Rule.

Let F(t)=t2et2dtF(t) = \int t^2 e^{t^2} dt. By the Fundamental Theorem of Calculus, F(t)=t2et2F'(t) = t^2 e^{t^2}. Let G(t)=tet2G(t) = t e^{t^2}. G(t)=ddt(tet2)=1et2+t(et22t)G'(t) = \frac{d}{dt}(t e^{t^2}) = 1 \cdot e^{t^2} + t \cdot (e^{t^2} \cdot 2t) (using product rule and chain rule) G(t)=et2+2t2et2=et2(1+2t2)G'(t) = e^{t^2} + 2t^2 e^{t^2} = e^{t^2}(1 + 2t^2).

Applying L'Hopital's Rule: limtF(t)G(t)=limtt2et2et2(1+2t2)\lim_{t\to\infty} \frac{F'(t)}{G'(t)} = \lim_{t\to\infty} \frac{t^2 e^{t^2}}{e^{t^2}(1 + 2t^2)} =limtt21+2t2= \lim_{t\to\infty} \frac{t^2}{1 + 2t^2}

To evaluate this limit, divide the numerator and the denominator by the highest power of tt in the denominator, which is t2t^2: =limtt2t21t2+2t2t2= \lim_{t\to\infty} \frac{\frac{t^2}{t^2}}{\frac{1}{t^2} + \frac{2t^2}{t^2}} =limt11t2+2= \lim_{t\to\infty} \frac{1}{\frac{1}{t^2} + 2} As tt \to \infty, 1t20\frac{1}{t^2} \to 0. So, the limit is 10+2=12\frac{1}{0 + 2} = \frac{1}{2}.

Therefore, limtyt=12\lim_{t\to\infty} \frac{y}{t} = \frac{1}{2}.

Step 4: Calculate the final expression. We need to find 16limtyt16 \lim_{t\to\infty} \frac{y}{t}. 16×12=816 \times \frac{1}{2} = 8.

The final answer is 8.

Explanation of the solution (minimal) The differential equation y+2ty=t2y' + 2ty = t^2 is a first-order linear DE. The integrating factor is IF=e2tdt=et2IF = e^{\int 2t dt} = e^{t^2}. Multiplying by IF, we get ddt(yet2)=t2et2\frac{d}{dt}(y e^{t^2}) = t^2 e^{t^2}. Integrating both sides gives yet2=t2et2dt+Cy e^{t^2} = \int t^2 e^{t^2} dt + C. So, y(t)=et2t2et2dt+Cet2y(t) = e^{-t^2} \int t^2 e^{t^2} dt + C e^{-t^2}. We need to find limtyt=limtet2t2et2dt+Cet2t\lim_{t\to\infty} \frac{y}{t} = \lim_{t\to\infty} \frac{e^{-t^2} \int t^2 e^{t^2} dt + C e^{-t^2}}{t}. The term limtCet2t=0\lim_{t\to\infty} \frac{C e^{-t^2}}{t} = 0. For the main term, limtt2et2dttet2\lim_{t\to\infty} \frac{\int t^2 e^{t^2} dt}{t e^{t^2}}, apply L'Hopital's Rule. Derivative of numerator is t2et2t^2 e^{t^2}. Derivative of denominator is et2(1+2t2)e^{t^2}(1 + 2t^2). The limit becomes limtt2et2et2(1+2t2)=limtt21+2t2=limt11/t2+2=12\lim_{t\to\infty} \frac{t^2 e^{t^2}}{e^{t^2}(1 + 2t^2)} = \lim_{t\to\infty} \frac{t^2}{1 + 2t^2} = \lim_{t\to\infty} \frac{1}{1/t^2 + 2} = \frac{1}{2}. Thus, limtyt=12\lim_{t\to\infty} \frac{y}{t} = \frac{1}{2}. Finally, 16limtyt=16×12=816 \lim_{t\to\infty} \frac{y}{t} = 16 \times \frac{1}{2} = 8.