Solveeit Logo

Question

Question: 20. \(\displaystyle \int \tan^{-1} (\sec x + \tan x)\,dx =\)...

  1. tan1(secx+tanx)dx=\displaystyle \int \tan^{-1} (\sec x + \tan x)\,dx =
A

πx2+x22+c\displaystyle \frac{\pi x}{2} + \frac{x^2}{2} + c

B

πx4+x24+c\displaystyle \frac{\pi x}{4} + \frac{x^2}{4} + c

C

sinx+x+c\displaystyle \sin x + x + c

D

sinxcosx+c\displaystyle \sin x\cos x + c

Answer

πx4+x24+c\displaystyle \frac{\pi x}{4} + \frac{x^2}{4} + c

Explanation

Solution

Key idea:

  1. Use the half‑angle identity:
secx+tanx=1+tan2 ⁣x2+2tanx21tan2 ⁣x2=(1+tanx2)2(1tanx2)(1+tanx2)=1+tanx21tanx2=tan ⁣(π4+x2).\sec x + \tan x = \frac{1+\tan^2\!\tfrac x2 + 2\tan\tfrac x2}{1-\tan^2\!\tfrac x2} = \frac{(\,1+\tan\tfrac x2\,)^2}{(1-\tan\tfrac x2)(1+\tan\tfrac x2)} = \frac{1+\tan\tfrac x2}{1-\tan\tfrac x2} = \tan\!\Bigl(\tfrac\pi4 + \tfrac x2\Bigr).
  1. Therefore
tan1(secx+tanx)=π4+x2.\tan^{-1}(\sec x + \tan x) = \tfrac\pi4 + \tfrac x2.
  1. Integrate term‑wise:
 ⁣(π4+x2)dx=π4x+12x22+C=πx4+x24+C.\int\!\Bigl(\tfrac\pi4 + \tfrac x2\Bigr)\,dx = \tfrac\pi4\,x + \tfrac1{2}\,\frac{x^2}{2} + C = \frac{\pi x}{4} + \frac{x^2}{4} + C.