Solveeit Logo

Question

Question: If the lines $\frac{2x-4}{\lambda}=\frac{y-1}{2}=\frac{z-3}{1}$ and $\frac{x-1}{1}=\frac{3y-1}{\lamb...

If the lines 2x4λ=y12=z31\frac{2x-4}{\lambda}=\frac{y-1}{2}=\frac{z-3}{1} and x11=3y1λ=z21\frac{x-1}{1}=\frac{3y-1}{\lambda}=\frac{z-2}{1} are perpendicular to other, then λ=\lambda =

A

76\frac{-7}{6}

B

67\frac{6}{7}

C

67\frac{-6}{7}

D

76\frac{7}{6}

Answer

67\frac{-6}{7}

Explanation

Solution

To find the value of λ\lambda, we first need to express the given lines in standard form and determine their direction vectors.

The first line is given as: 2x4λ=y12=z31\frac{2x-4}{\lambda}=\frac{y-1}{2}=\frac{z-3}{1}

We can rewrite this as: 2(x2)λ=y12=z31\frac{2(x-2)}{\lambda}=\frac{y-1}{2}=\frac{z-3}{1}

Which simplifies to: x2λ/2=y12=z31\frac{x-2}{\lambda/2}=\frac{y-1}{2}=\frac{z-3}{1}

Thus, the direction vector for the first line, d1\vec{d_1}, is (λ2,2,1)\left(\frac{\lambda}{2}, 2, 1\right).

The second line is given as: x11=3y1λ=z21\frac{x-1}{1}=\frac{3y-1}{\lambda}=\frac{z-2}{1}

We can rewrite this as: x11=3(y13)λ=z21\frac{x-1}{1}=\frac{3(y-\frac{1}{3})}{\lambda}=\frac{z-2}{1}

Which simplifies to: x11=y13λ/3=z21\frac{x-1}{1}=\frac{y-\frac{1}{3}}{\lambda/3}=\frac{z-2}{1}

Thus, the direction vector for the second line, d2\vec{d_2}, is (1,λ3,1)\left(1, \frac{\lambda}{3}, 1\right).

Since the lines are perpendicular, their direction vectors are orthogonal, meaning their dot product is zero: d1d2=0\vec{d_1} \cdot \vec{d_2} = 0

So, we have: (λ2)(1)+(2)(λ3)+(1)(1)=0\left(\frac{\lambda}{2}\right)(1) + (2)\left(\frac{\lambda}{3}\right) + (1)(1) = 0

This simplifies to: λ2+2λ3+1=0\frac{\lambda}{2} + \frac{2\lambda}{3} + 1 = 0

Multiplying the entire equation by 6 to eliminate fractions: 3λ+4λ+6=03\lambda + 4\lambda + 6 = 0

Combining terms: 7λ+6=07\lambda + 6 = 0

Solving for λ\lambda: 7λ=67\lambda = -6 λ=67\lambda = \frac{-6}{7}

Therefore, the value of λ\lambda is 67\frac{-6}{7}.