Solveeit Logo

Question

Question: If $f(x) = \begin{cases} 2+2x, & -1 \le x < 0 \\ 1-\frac{x}{3}, & 0 \le x \le 3 \end{cases}; g(x) = ...

If f(x)={2+2x,1x<01x3,0x3;g(x)={x,3x0x,0<x1f(x) = \begin{cases} 2+2x, & -1 \le x < 0 \\ 1-\frac{x}{3}, & 0 \le x \le 3 \end{cases}; g(x) = \begin{cases} -x, & -3 \le x \le 0 \\ x, & 0 < x \le 1 \end{cases}, then range of (fog)(x)(fog)(x) is:

A

(0, 1]

B

[0, 3]

C

[0, 1)

D

[0, 1]

Answer

[0, 1]

Explanation

Solution

The range of g(x)g(x) is [0,3][0, 3]. For y[0,3]y \in [0, 3], f(y)=1y3f(y) = 1 - \frac{y}{3}. The range of f(y)f(y) for y[0,3]y \in [0, 3] is [f(3),f(0)]=[133,103]=[0,1][f(3), f(0)] = [1 - \frac{3}{3}, 1 - \frac{0}{3}] = [0, 1]. Thus, the range of (fog)(x)(fog)(x) is [0,1][0, 1].