Solveeit Logo

Question

Question: If $\alpha$ and $\beta$ are the roots of the equation, $a\cos\theta + b\sin\theta = c$ then match th...

If α\alpha and β\beta are the roots of the equation, acosθ+bsinθ=ca\cos\theta + b\sin\theta = c then match the entries of column-I with the entries of column-II.

Column-I

(A) sinα+sinβ\sin\alpha + \sin\beta (B) sinα.sinβ\sin\alpha.\sin\beta (C) tanα2+tanβ2\tan \frac{\alpha}{2} + \tan \frac{\beta}{2} (D) tanα2.tanβ2=\tan \frac{\alpha}{2} . \tan \frac{\beta}{2} =

Column-II

(P) 2ba+c\frac{2b}{a+c} (Q) cac+a\frac{c-a}{c+a} (R) 2bca2+b2\frac{2bc}{a^2+b^2} (S) c2a2a2+b2\frac{c^2-a^2}{a^2+b^2}

Answer

A-R, B-S, C-P, D-Q

Explanation

Solution

To solve the problem, we need to transform the given trigonometric equation into quadratic equations in terms of sinθ\sin\theta and tan(θ/2)\tan(\theta/2) respectively.

The given equation is acosθ+bsinθ=ca\cos\theta + b\sin\theta = c.

Part 1: Finding sinα+sinβ\sin\alpha + \sin\beta and sinαsinβ\sin\alpha \sin\beta

To get a quadratic equation in sinθ\sin\theta, we isolate cosθ\cos\theta and square both sides: acosθ=cbsinθa\cos\theta = c - b\sin\theta Squaring both sides: a2cos2θ=(cbsinθ)2a^2\cos^2\theta = (c - b\sin\theta)^2 Substitute cos2θ=1sin2θ\cos^2\theta = 1 - \sin^2\theta: a2(1sin2θ)=c22bcsinθ+b2sin2θa^2(1 - \sin^2\theta) = c^2 - 2bc\sin\theta + b^2\sin^2\theta a2a2sin2θ=c22bcsinθ+b2sin2θa^2 - a^2\sin^2\theta = c^2 - 2bc\sin\theta + b^2\sin^2\theta Rearrange into a quadratic equation in sinθ\sin\theta: (a2+b2)sin2θ2bcsinθ+(c2a2)=0(a^2+b^2)\sin^2\theta - 2bc\sin\theta + (c^2-a^2) = 0

Let α\alpha and β\beta be the roots of the original equation. Then sinα\sin\alpha and sinβ\sin\beta are the roots of this quadratic equation. Using Vieta's formulas: (A) Sum of roots: sinα+sinβ=(2bc)a2+b2=2bca2+b2\sin\alpha + \sin\beta = \frac{-(-2bc)}{a^2+b^2} = \frac{2bc}{a^2+b^2}. This matches with (R) in Column-II. So, (A) \to (R).

(B) Product of roots: sinαsinβ=c2a2a2+b2\sin\alpha \sin\beta = \frac{c^2-a^2}{a^2+b^2}. This matches with (S) in Column-II. So, (B) \to (S).

Part 2: Finding tanα2+tanβ2\tan \frac{\alpha}{2} + \tan \frac{\beta}{2} and tanα2.tanβ2\tan \frac{\alpha}{2} . \tan \frac{\beta}{2}

To get a quadratic equation in tan(θ/2)\tan(\theta/2), we use the half-angle tangent substitutions: cosθ=1tan2(θ/2)1+tan2(θ/2)\cos\theta = \frac{1-\tan^2(\theta/2)}{1+\tan^2(\theta/2)} and sinθ=2tan(θ/2)1+tan2(θ/2)\sin\theta = \frac{2\tan(\theta/2)}{1+\tan^2(\theta/2)}. Let t=tan(θ/2)t = \tan(\theta/2). Substitute these into the original equation: a(1t21+t2)+b(2t1+t2)=ca\left(\frac{1-t^2}{1+t^2}\right) + b\left(\frac{2t}{1+t^2}\right) = c Multiply by (1+t2)(1+t^2) to clear the denominators: a(1t2)+2bt=c(1+t2)a(1-t^2) + 2bt = c(1+t^2) aat2+2bt=c+ct2a - at^2 + 2bt = c + ct^2 Rearrange into a quadratic equation in tt: (c+a)t22bt+(ca)=0(c+a)t^2 - 2bt + (c-a) = 0

Let α\alpha and β\beta be the roots of the original equation. Then tan(α/2)\tan(\alpha/2) and tan(β/2)\tan(\beta/2) are the roots of this quadratic equation. Using Vieta's formulas: (C) Sum of roots: tanα2+tanβ2=(2b)c+a=2bc+a\tan \frac{\alpha}{2} + \tan \frac{\beta}{2} = \frac{-(-2b)}{c+a} = \frac{2b}{c+a}. This matches with (P) in Column-II. So, (C) \to (P).

(D) Product of roots: tanα2.tanβ2=cac+a\tan \frac{\alpha}{2} . \tan \frac{\beta}{2} = \frac{c-a}{c+a}. This matches with (Q) in Column-II. So, (D) \to (Q).

Summary of Matches: (A) \to (R) (B) \to (S) (C) \to (P) (D) \to (Q)