Solveeit Logo

Question

Question: If a mod 3 = 1 and b mod 3 = 2, where a, b $\in$ N, then choose the set of correct options. (a mod ...

If a mod 3 = 1 and b mod 3 = 2, where a, b \in N, then choose the set of correct options.

(a mod b = c, a, b, c \in N ; means a = nb + c where n \in N)

A

(ab) mod 3 = 0

B

(ab) mod 3 = 2

C

(a + b) mod 3 = 0

D

(a + b) mod 2 = 1

Answer

Options B and C are correct.

Explanation

Solution

Given:

a1(mod3)a=3k+1a \equiv 1 \pmod{3} \quad \Rightarrow \quad a = 3k + 1 b2(mod3)b=3j+2(with k,jN)b \equiv 2 \pmod{3} \quad \Rightarrow \quad b = 3j + 2 \quad \text{(with } k,j \in \mathbb{N}\text{)}

Option A: (ab)mod3=0(ab) \mod 3 = 0

Calculate:

ab=(3k+1)(3j+2)=9kj+6k+3j+2ab = (3k+1)(3j+2) = 9kj + 6k + 3j + 2

Taking mod3\mod 3, the terms 9kj9kj, 6k6k, and 3j3j vanish (divisible by 3):

ab2(mod3)ab \equiv 2 \pmod{3}

Thus, Option A is false.

Option B: (ab)mod3=2(ab) \mod 3 = 2

From above, we clearly have ab2(mod3)ab \equiv 2 \pmod{3}.

Thus, Option B is correct.

Option C: (a+b)mod3=0(a+b) \mod 3 = 0

Calculate:

a+b=(3k+1)+(3j+2)=3k+3j+3=3(k+j+1)a+b = (3k+1) + (3j+2) = 3k + 3j + 3 = 3(k+j+1)

Clearly, a+ba+b is a multiple of 3.

Thus, Option C is correct.

Option D: (a+b)mod2=1(a+b) \mod 2 = 1

Since:

a+b=3(k+j+1)a+b = 3(k+j+1)

the parity depends on k+j+1k+j+1, which can be even or odd. For example:

  • If k=0k = 0 and j=0j = 0, then a+b=3a+b = 3 (odd, so 1(mod2)\equiv 1 \pmod{2}).
  • If k=0k = 0 and j=1j = 1, then a+b=6a+b = 6 (even, so 0(mod2)\equiv 0 \pmod{2}).

Thus, the statement is not always true. Option D is false.