Solveeit Logo

Question

Question: If $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & -3 \\ -1 & 2 & 3 \end{bmatrix}$, then $A_{31} + A_{32} ...

If A=[111213123]A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & -3 \\ -1 & 2 & 3 \end{bmatrix}, then A31+A32+A33=A_{31} + A_{32} + A_{33} =

where AijA_{ij} is cofactor of aija_{ij}, where A=[aij]3x3A = [a_{ij}]_{3x3}

A

0

B

1

C

10

D

11

Answer

0

Explanation

Solution

To find A31+A32+A33A_{31} + A_{32} + A_{33}, we need to calculate the cofactors A31A_{31}, A32A_{32}, and A33A_{33} of the matrix AA.

  1. Calculate A31A_{31}: A31=(1)3+1M31=M31A_{31} = (-1)^{3+1} M_{31} = M_{31}. M31M_{31} is the determinant of the submatrix obtained by deleting the 3rd row and 1st column of AA: M31=det[1113]=(1)(3)(1)(1)=31=4M_{31} = \det \begin{bmatrix} 1 & 1 \\ 1 & -3 \end{bmatrix} = (1)(-3) - (1)(1) = -3 - 1 = -4. So, A31=4A_{31} = -4.

  2. Calculate A32A_{32}: A32=(1)3+2M32=M32A_{32} = (-1)^{3+2} M_{32} = -M_{32}. M32M_{32} is the determinant of the submatrix obtained by deleting the 3rd row and 2nd column of AA: M32=det[1123]=(1)(3)(1)(2)=32=5M_{32} = \det \begin{bmatrix} 1 & 1 \\ 2 & -3 \end{bmatrix} = (1)(-3) - (1)(2) = -3 - 2 = -5. So, A32=(5)=5A_{32} = -(-5) = 5.

  3. Calculate A33A_{33}: A33=(1)3+3M33=M33A_{33} = (-1)^{3+3} M_{33} = M_{33}. M33M_{33} is the determinant of the submatrix obtained by deleting the 3rd row and 3rd column of AA: M33=det[1121]=(1)(1)(1)(2)=12=1M_{33} = \det \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} = (1)(1) - (1)(2) = 1 - 2 = -1. So, A33=1A_{33} = -1.

Now, find the sum A31+A32+A33A_{31} + A_{32} + A_{33}: A31+A32+A33=4+5+(1)=11=0A_{31} + A_{32} + A_{33} = -4 + 5 + (-1) = 1 - 1 = 0.

Therefore, A31+A32+A33=0A_{31} + A_{32} + A_{33} = 0.