Solveeit Logo

Question

Question: Elements X and Y combine to form two non-electrolyte compounds having molecular formula XY₂, and XY₄...

Elements X and Y combine to form two non-electrolyte compounds having molecular formula XY₂, and XY₄. When dissolved in 20 g benzene, 1 g XY₂ lowers the freezing point by 2.3°C and 1g XY₄ lowers the freezing point by 1.3°C. If the cryoscopic constant for benzene is 5.1 K kg mol⁻¹.

A

x = 25.6,y = 42.6

B

x = 42.6,y = 25.6

C

x = 35.89,y = 54.9

D

x = 54.9,y = 35.89

Answer

Atomic mass of X = 25.6, Atomic mass of Y = 42.6

Explanation

Solution

The problem involves the application of the colligative property of depression in freezing point. The formula relating freezing point depression (ΔTf\Delta T_f), molality (mm), and cryoscopic constant (KfK_f) is:

ΔTf=Kfm\Delta T_f = K_f \cdot m

Molality (mm) is defined as:

m=moles of solutemass of solvent (kg)=mass of solute / molar mass of solutemass of solvent (kg)m = \frac{\text{moles of solute}}{\text{mass of solvent (kg)}} = \frac{\text{mass of solute / molar mass of solute}}{\text{mass of solvent (kg)}}

Rearranging the formula to find the molar mass (MM) of the solute:

M=Kfmass of soluteΔTfmass of solvent (kg)M = \frac{K_f \cdot \text{mass of solute}}{\Delta T_f \cdot \text{mass of solvent (kg)}}

If the mass of the solvent is given in grams (Wsolvent(g)W_{solvent(g)}), the formula becomes:

M=Kfmass of solute1000ΔTfWsolvent(g)M = \frac{K_f \cdot \text{mass of solute} \cdot 1000}{\Delta T_f \cdot W_{solvent(g)}}

Given data:

Kf=5.1 K kg mol⁻¹K_f = 5.1 \text{ K kg mol⁻¹} Mass of solute (both XY₂ and XY₄) = 1 g Mass of benzene (solvent) = 20 g

  1. Calculate the molar mass of XY₂ (MXY2M_{XY_2}):

ΔTf=2.3 °C\Delta T_f = 2.3 \text{ °C} MXY2=5.1 K kg mol⁻¹×1 g×10002.3 K×20 gM_{XY_2} = \frac{5.1 \text{ K kg mol⁻¹} \times 1 \text{ g} \times 1000}{2.3 \text{ K} \times 20 \text{ g}} MXY2=510046110.87 g/molM_{XY_2} = \frac{5100}{46} \approx 110.87 \text{ g/mol}

  1. Calculate the molar mass of XY₄ (MXY4M_{XY_4}):

ΔTf=1.3 °C\Delta T_f = 1.3 \text{ °C} MXY4=5.1 K kg mol⁻¹×1 g×10001.3 K×20 gM_{XY_4} = \frac{5.1 \text{ K kg mol⁻¹} \times 1 \text{ g} \times 1000}{1.3 \text{ K} \times 20 \text{ g}} MXY4=510026196.15 g/molM_{XY_4} = \frac{5100}{26} \approx 196.15 \text{ g/mol}

  1. Set up equations for atomic masses:

Let the atomic mass of X be xx and the atomic mass of Y be yy. For XY₂: x+2y=MXY2110.87(Equation 1)x + 2y = M_{XY_2} \approx 110.87 \quad \text{(Equation 1)} For XY₄: x+4y=MXY4196.15(Equation 2)x + 4y = M_{XY_4} \approx 196.15 \quad \text{(Equation 2)}

  1. Solve the system of equations:

Subtract Equation 1 from Equation 2: (x+4y)(x+2y)=196.15110.87(x + 4y) - (x + 2y) = 196.15 - 110.87 2y=85.282y = 85.28 y=85.282y = \frac{85.28}{2} y=42.64y = 42.64

Substitute the value of yy into Equation 1: x+2(42.64)=110.87x + 2(42.64) = 110.87 x+85.28=110.87x + 85.28 = 110.87 x=110.8785.28x = 110.87 - 85.28 x=25.59x = 25.59

Rounding to one decimal place, the atomic mass of X is approximately 25.6 and the atomic mass of Y is approximately 42.6.