Question
Question: What will be the projection of vector $\vec{A}$ = $\hat{i}$+$\hat{j}$+$\hat{k}$ on vector $\vec{B}$ ...
What will be the projection of vector A = i^+j^+k^ on vector B = i^+j^ ? [JEE-Main-2021_July]

A
2(i^+j^+k^)
B
2(i^+j^+k^)
C
2(i^+j^)
D
(i^+j^)
Answer
(i^+j^)
Explanation
Solution
The projection of vector A on vector B is given by the formula:
ProjBA=∣B∣2A⋅BB
Given vectors are A=i^+j^+k^ and B=i^+j^.
First, calculate the dot product A⋅B:
A⋅B=(i^+j^+k^)⋅(i^+j^)=(1)(1)+(1)(1)+(1)(0)=1+1+0=2
Next, calculate the magnitude squared of vector B:
∣B∣2=∣i^+j^∣2=(1)2+(1)2+(0)2=1+1=2
Now, substitute these values into the projection formula:
ProjBA=22(i^+j^)=1(i^+j^)=i^+j^
Thus, the projection of vector A on vector B is i^+j^.