Solveeit Logo

Question

Question: Two small objects $X$ and $Y$ are permanently separated by a distance 1 cm. Object $X$ has a charge ...

Two small objects XX and YY are permanently separated by a distance 1 cm. Object XX has a charge of +1.0μC\mu C and object YY has a charge of 1.0μC-1.0\mu C. A certain number of electrons are removed from XX and put onto YY to make the electrostatic force between the two objects an attractive force whose magnitude is 360 N. Number of electrons removed is

A

8.4x101310^{13}

B

6.25x101210^{12}

C

4.2x101110^{11}

D

3.5x101010^{10}

Answer

6.25x101210^{12}

Explanation

Solution

To determine the number of electrons transferred, we apply Coulomb's Law.

  1. Define initial conditions:

    • Object XX has a charge of +1.0μC+1.0\,\mu\text{C}.
    • Object YY has a charge of 1.0μC-1.0\,\mu\text{C}.
  2. Account for electron transfer:

    • Let nn be the number of electrons transferred from XX to YY.
    • The charge of each electron is e=1.6×1019Ce = 1.6 \times 10^{-19}\,\text{C}.
    • The new charge on XX is QX=1.0×106+neQ_X = 1.0 \times 10^{-6} + ne.
    • The new charge on YY is QY=1.0×106neQ_Y = -1.0 \times 10^{-6} - ne.
  3. Apply Coulomb's Law:

    • F=kQXQYr2F = k \frac{|Q_X Q_Y|}{r^2}, where F=360NF = 360\,\text{N}, r=0.01mr = 0.01\,\text{m}, and k=9.0×109N m2/C2k = 9.0 \times 10^9\, \text{N m}^2/\text{C}^2.
    • 360=9.0×109(1.0×106+ne)2(0.01)2360 = \frac{9.0 \times 10^9 \left(1.0 \times 10^{-6} + ne\right)^2}{(0.01)^2}.
  4. Solve for nene:

    • (1.0×106+ne)2=360×(0.01)29.0×109=4.0×1012\left(1.0 \times 10^{-6} + ne\right)^2 = \frac{360 \times (0.01)^2}{9.0 \times 10^9} = 4.0 \times 10^{-12}.
    • 1.0×106+ne=4.0×1012=2.0×1061.0 \times 10^{-6} + ne = \sqrt{4.0 \times 10^{-12}} = 2.0 \times 10^{-6}.
    • ne=2.0×1061.0×106=1.0×106Cne = 2.0 \times 10^{-6} - 1.0 \times 10^{-6} = 1.0 \times 10^{-6}\,\text{C}.
  5. Solve for nn:

    • n=1.0×1061.6×10196.25×1012n = \frac{1.0 \times 10^{-6}}{1.6 \times 10^{-19}} \approx 6.25 \times 10^{12}.

Therefore, the number of electrons removed from XX and put onto YY is approximately 6.25×10126.25 \times 10^{12}.