Solveeit Logo

Question

Question: Two points $P_1$ and $P_2$ are at distances $r_1$ and $r_2$ respectively from the origin $O$ and $OP...

Two points P1P_1 and P2P_2 are at distances r1r_1 and r2r_2 respectively from the origin OO and OP1OP_1 and OP2OP_2 makes angle θ1\theta_1 and θ2\theta_2 respectively with the x-axis. Let there be a point PP on P1P2P_1P_2 such that OPOP makes an angle θ2+θ12\frac{\theta_2+\theta_1}{2} with the x-axis. Then OPOP is:

A

2r1r2r1+r2cosθ2θ12\frac{2r_1r_2}{r_1+r_2}cos\frac{\theta_2-\theta_1}{2}

B

2r1r2r1+r2sinθ2θ12\frac{2r_1r_2}{r_1+r_2}sin\frac{\theta_2-\theta_1}{2}

C

r1r2r1+r2cosθ2+θ12\frac{r_1r_2}{r_1+r_2}cos\frac{\theta_2+\theta_1}{2}

D

r1r2r1+r2sinθ2+θ12\frac{r_1r_2}{r_1+r_2}sin\frac{\theta_2+\theta_1}{2}

Answer

2r1r2r1+r2cosθ2θ12\frac{2r_1r_2}{r_1+r_2}cos\frac{\theta_2-\theta_1}{2}

Explanation

Solution

The problem asks for the length of the line segment OPOP, where OO is the origin, P1P_1 and P2P_2 are two points, and PP is a point on the line segment P1P2P_1P_2. We are given the distances of P1P_1 and P2P_2 from the origin as r1r_1 and r2r_2 respectively, and their angles with the x-axis as θ1\theta_1 and θ2\theta_2. The point PP is special because OPOP makes an angle θ2+θ12\frac{\theta_2+\theta_1}{2} with the x-axis.

Let r=OPr = OP.

The coordinates of the points can be written in polar form:

P1=(r1,θ1)P_1 = (r_1, \theta_1)

P2=(r2,θ2)P_2 = (r_2, \theta_2)

P=(r,θ)P = (r, \theta), where θ=θ1+θ22\theta = \frac{\theta_1 + \theta_2}{2}.

First, let's analyze the angles.

The angle that OP1OP_1 makes with the x-axis is θ1\theta_1.

The angle that OP2OP_2 makes with the x-axis is θ2\theta_2.

The angle that OPOP makes with the x-axis is θ1+θ22\frac{\theta_1 + \theta_2}{2}.

Consider the angle P1OP\angle P_1OP. This angle is the difference between the angle of OPOP and the angle of OP1OP_1:

P1OP=θ1+θ22θ1=θ2θ12\angle P_1OP = \frac{\theta_1 + \theta_2}{2} - \theta_1 = \frac{\theta_2 - \theta_1}{2}.

Consider the angle P2OP\angle P_2OP. This angle is the difference between the angle of OP2OP_2 and the angle of OPOP:

P2OP=θ2θ1+θ22=θ2θ12\angle P_2OP = \theta_2 - \frac{\theta_1 + \theta_2}{2} = \frac{\theta_2 - \theta_1}{2}.

Since P1OP=P2OP=θ2θ12\angle P_1OP = \angle P_2OP = \frac{\theta_2 - \theta_1}{2}, the line segment OPOP is the angle bisector of P1OP2\angle P_1OP_2.

Now, consider the triangle OP1P2\triangle OP_1P_2. The point PP lies on the side P1P2P_1P_2, and OPOP is the angle bisector of P1OP2\angle P_1OP_2.

We can use the property that the area of OP1P2\triangle OP_1P_2 is the sum of the areas of OP1P\triangle OP_1P and OP2P\triangle OP_2P.

Area of a triangle with two sides a,ba, b and included angle ϕ\phi is 12absinϕ\frac{1}{2}ab\sin\phi.

  1. Area(OP1P2\triangle OP_1P_2) = 12OP1OP2sin(P1OP2)\frac{1}{2} OP_1 \cdot OP_2 \sin(\angle P_1OP_2)

    P1OP2=θ2θ1\angle P_1OP_2 = \theta_2 - \theta_1 (assuming θ2>θ1\theta_2 > \theta_1, otherwise it's θ2θ1|\theta_2 - \theta_1| or 2πθ2θ12\pi - |\theta_2 - \theta_1| depending on the convention, but sin(θ)\sin(\theta) is same as sin(θ)\sin(-\theta) for this context).

    Area(OP1P2\triangle OP_1P_2) = 12r1r2sin(θ2θ1)\frac{1}{2} r_1 r_2 \sin(\theta_2 - \theta_1).

  2. Area(OP1P\triangle OP_1P) = 12OP1OPsin(P1OP)\frac{1}{2} OP_1 \cdot OP \sin(\angle P_1OP)

    Area(OP1P\triangle OP_1P) = 12r1rsin(θ2θ12)\frac{1}{2} r_1 r \sin\left(\frac{\theta_2 - \theta_1}{2}\right).

  3. Area(OP2P\triangle OP_2P) = 12OP2OPsin(P2OP)\frac{1}{2} OP_2 \cdot OP \sin(\angle P_2OP)

    Area(OP2P\triangle OP_2P) = 12r2rsin(θ2θ12)\frac{1}{2} r_2 r \sin\left(\frac{\theta_2 - \theta_1}{2}\right).

Now, set up the area equation:

Area(OP1P2\triangle OP_1P_2) = Area(OP1P\triangle OP_1P) + Area(OP2P\triangle OP_2P)

12r1r2sin(θ2θ1)=12r1rsin(θ2θ12)+12r2rsin(θ2θ12)\frac{1}{2} r_1 r_2 \sin(\theta_2 - \theta_1) = \frac{1}{2} r_1 r \sin\left(\frac{\theta_2 - \theta_1}{2}\right) + \frac{1}{2} r_2 r \sin\left(\frac{\theta_2 - \theta_1}{2}\right)

Cancel 12\frac{1}{2} from all terms:

r1r2sin(θ2θ1)=r1rsin(θ2θ12)+r2rsin(θ2θ12)r_1 r_2 \sin(\theta_2 - \theta_1) = r_1 r \sin\left(\frac{\theta_2 - \theta_1}{2}\right) + r_2 r \sin\left(\frac{\theta_2 - \theta_1}{2}\right)

Factor out rsin(θ2θ12)r \sin\left(\frac{\theta_2 - \theta_1}{2}\right) from the right side:

r1r2sin(θ2θ1)=r(r1+r2)sin(θ2θ12)r_1 r_2 \sin(\theta_2 - \theta_1) = r(r_1 + r_2) \sin\left(\frac{\theta_2 - \theta_1}{2}\right)

Use the trigonometric identity sin(2A)=2sinAcosA\sin(2A) = 2 \sin A \cos A. Let A=θ2θ12A = \frac{\theta_2 - \theta_1}{2}.

So, sin(θ2θ1)=2sin(θ2θ12)cos(θ2θ12)\sin(\theta_2 - \theta_1) = 2 \sin\left(\frac{\theta_2 - \theta_1}{2}\right) \cos\left(\frac{\theta_2 - \theta_1}{2}\right).

Substitute this into the equation:

r1r2[2sin(θ2θ12)cos(θ2θ12)]=r(r1+r2)sin(θ2θ12)r_1 r_2 \left[2 \sin\left(\frac{\theta_2 - \theta_1}{2}\right) \cos\left(\frac{\theta_2 - \theta_1}{2}\right)\right] = r(r_1 + r_2) \sin\left(\frac{\theta_2 - \theta_1}{2}\right)

Assuming sin(θ2θ12)0\sin\left(\frac{\theta_2 - \theta_1}{2}\right) \neq 0 (i.e., θ1θ2\theta_1 \neq \theta_2), we can cancel it from both sides:

2r1r2cos(θ2θ12)=r(r1+r2)2 r_1 r_2 \cos\left(\frac{\theta_2 - \theta_1}{2}\right) = r(r_1 + r_2)

Solve for rr:

r=2r1r2cos(θ2θ12)r1+r2r = \frac{2 r_1 r_2 \cos\left(\frac{\theta_2 - \theta_1}{2}\right)}{r_1 + r_2}

This matches option (A).