Solveeit Logo

Question

Question: The energy of a system as a function of time t is given as $E(t) = A^2 \exp(-\alpha t)$, where $\alp...

The energy of a system as a function of time t is given as E(t)=A2exp(αt)E(t) = A^2 \exp(-\alpha t), where α=0.2s1\alpha = 0.2 s^{-1}. The measurement of A has an error of 1.25%. If the error in the measurement of time is 1.50%, find the maximum percentage error in the calculation of value of E(t)E(t) at t=4t = 4 s.

Answer

3.7%

Explanation

Solution

The energy of the system is given by the equation E(t)=A2exp(αt)E(t) = A^2 \exp(-\alpha t).
To find the maximum percentage error in E(t)E(t), we use the method of error propagation.
Take the natural logarithm of both sides of the equation:
lnE=ln(A2)+ln(eαt)\ln E = \ln(A^2) + \ln(e^{-\alpha t})
lnE=2lnAαt\ln E = 2 \ln A - \alpha t

To find the maximum fractional error, we differentiate the logarithmic equation and sum the absolute values of the individual terms:
ΔEE=(lnE)AΔA+(lnE)tΔt\frac{\Delta E}{E} = \left| \frac{\partial(\ln E)}{\partial A} \Delta A \right| + \left| \frac{\partial(\ln E)}{\partial t} \Delta t \right|
ΔEE=2AΔA+(α)Δt\frac{\Delta E}{E} = \left| \frac{2}{A} \Delta A \right| + \left| (-\alpha) \Delta t \right|
ΔEE=2ΔAA+αΔt\frac{\Delta E}{E} = 2 \frac{\Delta A}{A} + \alpha \Delta t

Now, let's substitute the given values:

  1. Percentage error in the measurement of A: ΔAA×100%=1.25%\frac{\Delta A}{A} \times 100\% = 1.25\%.
    So, ΔAA=0.0125\frac{\Delta A}{A} = 0.0125.
  2. Percentage error in the measurement of time: Δtt×100%=1.50%\frac{\Delta t}{t} \times 100\% = 1.50\%.
    So, Δtt=0.015\frac{\Delta t}{t} = 0.015.
  3. Given α=0.2 s1\alpha = 0.2 \text{ s}^{-1}.
  4. The calculation is at t=4 st = 4 \text{ s}.

Calculate the individual error contributions:
First term: 2ΔAA=2×0.0125=0.0252 \frac{\Delta A}{A} = 2 \times 0.0125 = 0.025.
In percentage: 0.025×100%=2.5%0.025 \times 100\% = 2.5\%.

Second term: αΔt\alpha \Delta t.
First, find Δt\Delta t using the given percentage error in time and the value of tt:
Δt=(Δtt)×t=0.015×4 s=0.06 s\Delta t = \left(\frac{\Delta t}{t}\right) \times t = 0.015 \times 4 \text{ s} = 0.06 \text{ s}.
Now, calculate αΔt\alpha \Delta t:
αΔt=(0.2 s1)×(0.06 s)=0.012\alpha \Delta t = (0.2 \text{ s}^{-1}) \times (0.06 \text{ s}) = 0.012.
In percentage: 0.012×100%=1.2%0.012 \times 100\% = 1.2\%.

Finally, sum the percentage errors to find the maximum percentage error in E(t)E(t):
Maximum percentage error in E(t)=(2.5%+1.2%)=3.7%E(t) = (2.5\% + 1.2\%) = 3.7\%.