Solveeit Logo

Question

Question: The angle between the straight lines ๐‘ฅ+12=๐‘ฆโˆ’24=๐‘ง+35 and ๐‘ฅโˆ’11=๐‘ฆ+22=๐‘งโˆ’3โˆ’4...

The angle between the straight lines ๐‘ฅ+12=๐‘ฆโˆ’24=๐‘ง+35 and ๐‘ฅโˆ’11=๐‘ฆ+22=๐‘งโˆ’3โˆ’4

Answer

arccos(10/(3โˆš105))

Explanation

Solution

The angle between two straight lines in 3D space can be found using their direction vectors. The general symmetric form of a straight line is given by:

xโˆ’x1a=yโˆ’y1b=zโˆ’z1c\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}

where (x1,y1,z1)(x_1, y_1, z_1) is a point on the line and dโƒ—=ai^+bj^+ck^\vec{d} = a\hat{i} + b\hat{j} + c\hat{k} is the direction vector of the line.

Given the first line:

L1:x+12=yโˆ’24=z+35L_1: \frac{x+1}{2} = \frac{y-2}{4} = \frac{z+3}{5}

The direction vector for L1L_1 is d1โƒ—=2i^+4j^+5k^\vec{d_1} = 2\hat{i} + 4\hat{j} + 5\hat{k}.

Given the second line:

L2:xโˆ’11=y+22=zโˆ’3โˆ’4L_2: \frac{x-1}{1} = \frac{y+2}{2} = \frac{z-3}{-4}

The direction vector for L2L_2 is d2โƒ—=1i^+2j^โˆ’4k^\vec{d_2} = 1\hat{i} + 2\hat{j} - 4\hat{k}.

The angle ฮธ\theta between two lines with direction vectors d1โƒ—\vec{d_1} and d2โƒ—\vec{d_2} is given by the formula:

cosโกฮธ=โˆฃd1โƒ—โ‹…d2โƒ—โˆฃโˆฃโˆฃd1โƒ—โˆฃโˆฃโ‹…โˆฃโˆฃd2โƒ—โˆฃโˆฃ\cos \theta = \frac{|\vec{d_1} \cdot \vec{d_2}|}{||\vec{d_1}|| \cdot ||\vec{d_2}||}

First, calculate the dot product d1โƒ—โ‹…d2โƒ—\vec{d_1} \cdot \vec{d_2}:

d1โƒ—โ‹…d2โƒ—=(2)(1)+(4)(2)+(5)(โˆ’4)=2+8โˆ’20=โˆ’10\vec{d_1} \cdot \vec{d_2} = (2)(1) + (4)(2) + (5)(-4) = 2 + 8 - 20 = -10

Next, calculate the magnitudes of the direction vectors:

โˆฃโˆฃd1โƒ—โˆฃโˆฃ=22+42+52=4+16+25=45=35||\vec{d_1}|| = \sqrt{2^2 + 4^2 + 5^2} = \sqrt{4 + 16 + 25} = \sqrt{45} = 3\sqrt{5}

โˆฃโˆฃd2โƒ—โˆฃโˆฃ=12+22+(โˆ’4)2=1+4+16=21||\vec{d_2}|| = \sqrt{1^2 + 2^2 + (-4)^2} = \sqrt{1 + 4 + 16} = \sqrt{21}

Now, substitute these values into the formula for cosโกฮธ\cos \theta:

cosโกฮธ=โˆฃโˆ’10โˆฃ(35)(21)=1035ร—21=103105\cos \theta = \frac{|-10|}{(3\sqrt{5})(\sqrt{21})} = \frac{10}{3\sqrt{5 \times 21}} = \frac{10}{3\sqrt{105}}

Therefore, the angle ฮธ\theta between the lines is:

ฮธ=arccosโก(103105)\theta = \arccos\left(\frac{10}{3\sqrt{105}}\right)