Solveeit Logo

Question

Mathematics Question on Properties of Inverse Trigonometric Functions

2tan1(13)+tan1(14)=2 \, \tan^{-1}\left(\frac{1}{3}\right)+tan^{-1}\left(\frac{1}{4}\right)=

A

tan1(1613)\tan^{-1}\left(\frac{16}{13}\right)

B

tan1(1723)\tan^{-1}\left(\frac{17}{23}\right)

C

π4\frac{\pi}{4}

D

0

Answer

tan1(1613)\tan^{-1}\left(\frac{16}{13}\right)

Explanation

Solution

The correct option is (A): tan1(1613)\tan^{-1}\left(\frac{16}{13}\right)
tan1(13)+tan1(14)\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{1}{4}\right)
=tan1(2×13)1(13)2+tan1(14)=\tan ^{-1} \frac{\left(2 \times \frac{1}{3}\right)}{1-\left(\frac{1}{3}\right)^{2}}+\tan ^{-1}\left(\frac{1}{4}\right)
=tan1[(23)(119)]+tan114=\tan ^{-1}\left[\frac{\left(\frac{2}{3}\right)}{\left(1-\frac{1}{9}\right)}\right]+\tan ^{-1} \frac{1}{4}
=tan1(23×98)+tan114=\tan ^{-1}\left(\frac{2}{3} \times \frac{9}{8}\right)+\tan ^{-1} \frac{1}{4}
=tan134+tan114=\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{1}{4}
=tan1(34+14134×14)=\tan ^{-1}\left(\frac{\frac{3}{4}+\frac{1}{4}}{1-\frac{3}{4} \times \frac{1}{4}}\right)
=tan111316=tan1(1613)=\tan ^{-1} \frac{1}{1-\frac{3}{16}}=\tan ^{-1}\left(\frac{16}{13}\right)