Question
Question: \(2\sin 30^o +2\tan 45^o -3\cos 60^o -\cos^2 30^o=\) A. 0 B. 1 C. -1 D. None of these...
2sin30o+2tan45o−3cos60o−cos230o=
A. 0
B. 1
C. -1
D. None of these
Solution
Here we use the basic trigonometric ratios to find the required value. Remember basic trigonometric values.
sin30o=21,tan45o=1,cos60o=21,cos30o=23
Complete step-by-step answer:
We have to find the value of 2sin30o+2tan45o−3cos60o−cos230o.
As we know, sin30o=21,tan45o=1,cos60o=21,cos30o=23, thus, putting these values in the above equation, we get,
2sin30o+2tan45o−3cos60o−cos230o=2×21+2×1−3×21−(23)2
⟹2sin30o+2tan45o−3cos60o−cos230o=1+2−23−43
⟹2sin30o+2tan45o−3cos60o−cos230o=3−23−43
Taking LCM in the denominator to simplify, we get,
2sin30o+2tan45o–3cos60o−cos230o=43×4−3×2−3
⟹2sin30o+2tan45o−3cos60o−cos230o=412−6−3=43
Thus, 2sin30o+2tan45o−3cos60o−cos230o=43
Hence, option D is correct.
Note: In this type of questions, we just need to put the values of the basic trigonometric ratios being asked and then simplify the equation in order to find the required value.