Solveeit Logo

Question

Question: $\sec 1 \cdot \sec 2 + \sec 2 \cdot \sec 3 + \sec 3.\sec 4 + \dots$...

sec1sec2+sec2sec3+sec3.sec4+\sec 1 \cdot \sec 2 + \sec 2 \cdot \sec 3 + \sec 3.\sec 4 + \dots

Answer

tan(n+1)tan1sin1\frac{\tan(n+1) - \tan 1}{\sin 1}

Explanation

Solution

To find the sum of the given series, we first identify the general term. The series is sec1sec2+sec2sec3+sec3sec4+\sec 1 \cdot \sec 2 + \sec 2 \cdot \sec 3 + \sec 3 \cdot \sec 4 + \dots The general term of the series can be written as Tk=secksec(k+1)T_k = \sec k \cdot \sec(k+1). We can rewrite seck\sec k as 1cosk\frac{1}{\cos k}. So, Tk=1coskcos(k+1)T_k = \frac{1}{\cos k \cdot \cos(k+1)}.

To make this term suitable for a telescoping sum, we use the identity sin(AB)=sinAcosBcosAsinB\sin(A-B) = \sin A \cos B - \cos A \sin B. Let A=k+1A = k+1 and B=kB = k. Then AB=(k+1)k=1A-B = (k+1) - k = 1. So, sin((k+1)k)=sin1\sin((k+1)-k) = \sin 1. We multiply and divide the general term by sin1\sin 1: Tk=1sin1sin((k+1)k)coskcos(k+1)T_k = \frac{1}{\sin 1} \cdot \frac{\sin((k+1)-k)}{\cos k \cdot \cos(k+1)}

Now, expand the numerator using the sine difference identity: Tk=1sin1sin(k+1)coskcos(k+1)sinkcoskcos(k+1)T_k = \frac{1}{\sin 1} \cdot \frac{\sin(k+1)\cos k - \cos(k+1)\sin k}{\cos k \cdot \cos(k+1)} Separate the terms: Tk=1sin1(sin(k+1)coskcoskcos(k+1)cos(k+1)sinkcoskcos(k+1))T_k = \frac{1}{\sin 1} \left( \frac{\sin(k+1)\cos k}{\cos k \cdot \cos(k+1)} - \frac{\cos(k+1)\sin k}{\cos k \cdot \cos(k+1)} \right) Simplify the terms: Tk=1sin1(sin(k+1)cos(k+1)sinkcosk)T_k = \frac{1}{\sin 1} \left( \frac{\sin(k+1)}{\cos(k+1)} - \frac{\sin k}{\cos k} \right) Using the identity tanx=sinxcosx\tan x = \frac{\sin x}{\cos x}: Tk=1sin1(tan(k+1)tank)T_k = \frac{1}{\sin 1} (\tan(k+1) - \tan k)

Now, we find the sum of the first nn terms, Sn=k=1nTkS_n = \sum_{k=1}^{n} T_k: Sn=k=1n1sin1(tan(k+1)tank)S_n = \sum_{k=1}^{n} \frac{1}{\sin 1} (\tan(k+1) - \tan k) Sn=1sin1k=1n(tan(k+1)tank)S_n = \frac{1}{\sin 1} \sum_{k=1}^{n} (\tan(k+1) - \tan k) This is a telescoping sum: For k=1k=1: tan2tan1\tan 2 - \tan 1 For k=2k=2: tan3tan2\tan 3 - \tan 2 For k=3k=3: tan4tan3\tan 4 - \tan 3 ... For k=nk=n: tan(n+1)tann\tan(n+1) - \tan n

When we sum these terms, all intermediate terms cancel out: Sn=1sin1[(tan2tan1)+(tan3tan2)+(tan4tan3)++(tan(n+1)tann)]S_n = \frac{1}{\sin 1} [(\tan 2 - \tan 1) + (\tan 3 - \tan 2) + (\tan 4 - \tan 3) + \dots + (\tan(n+1) - \tan n)] Sn=1sin1(tan(n+1)tan1)S_n = \frac{1}{\sin 1} (\tan(n+1) - \tan 1)

This is the sum of the first nn terms of the series. If the question implies an infinite series (nn \to \infty), the term tan(n+1)\tan(n+1) does not converge as nn \to \infty. The tangent function is periodic and its value oscillates between -\infty and ++\infty. Therefore, the infinite series diverges.

The angles (1, 2, 3, etc.) are assumed to be in radians, as no degree symbol is specified.

The final answer is tan(n+1)tan1sin1\boxed{\frac{\tan(n+1) - \tan 1}{\sin 1}}

Explanation of the solution:

  1. Identify General Term: The general term of the series is Tk=secksec(k+1)=1coskcos(k+1)T_k = \sec k \cdot \sec(k+1) = \frac{1}{\cos k \cdot \cos(k+1)}.
  2. Transform to Difference: Multiply and divide by sin((k+1)k)=sin1\sin((k+1)-k) = \sin 1 to express TkT_k as a difference of two terms. Tk=1sin1sin((k+1)k)coskcos(k+1)=1sin1(sin(k+1)coskcos(k+1)sinkcoskcos(k+1))T_k = \frac{1}{\sin 1} \cdot \frac{\sin((k+1)-k)}{\cos k \cdot \cos(k+1)} = \frac{1}{\sin 1} \left( \frac{\sin(k+1)\cos k - \cos(k+1)\sin k}{\cos k \cdot \cos(k+1)} \right).
  3. Simplify to Tangent Form: Split the fraction and simplify using tanx=sinxcosx\tan x = \frac{\sin x}{\cos x}. Tk=1sin1(sin(k+1)cos(k+1)sinkcosk)=1sin1(tan(k+1)tank)T_k = \frac{1}{\sin 1} \left( \frac{\sin(k+1)}{\cos(k+1)} - \frac{\sin k}{\cos k} \right) = \frac{1}{\sin 1} (\tan(k+1) - \tan k).
  4. Telescoping Sum: Sum the terms from k=1k=1 to nn. All intermediate terms cancel out, leaving only the first and last terms. Sn=k=1n1sin1(tan(k+1)tank)=1sin1(tan(n+1)tan1)S_n = \sum_{k=1}^{n} \frac{1}{\sin 1} (\tan(k+1) - \tan k) = \frac{1}{\sin 1} (\tan(n+1) - \tan 1).
  5. Divergence: For an infinite series (nn \to \infty), limntan(n+1)\lim_{n \to \infty} \tan(n+1) does not exist, so the infinite series diverges. The provided answer is for the sum of the first 'n' terms.

Answer: The sum of the first nn terms of the series is tan(n+1)tan1sin1\frac{\tan(n+1) - \tan 1}{\sin 1}.