Solveeit Logo

Question

Question: If $\lim_{x\to 0} \frac{x+\sin x-x \cos x-\tan x}{x^{n}}$ exists and is non-zero finite value, then ...

If limx0x+sinxxcosxtanxxn\lim_{x\to 0} \frac{x+\sin x-x \cos x-\tan x}{x^{n}} exists and is non-zero finite value, then the value of n is

A

3

B

4

C

5

D

6

Answer

5

Explanation

Solution

To find the value of nn, we need to analyze the Taylor series expansion of the numerator around x=0x=0.

The Maclaurin series expansions for sinx\sin x, cosx\cos x, and tanx\tan x are:

  1. sinx=xx33!+x55!x77!+O(x9)\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + O(x^9)

  2. cosx=1x22!+x44!x66!+O(x8)\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + O(x^8)

  3. tanx=x+x33+2x515+17x7315+O(x9)\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + O(x^9)

Substitute these expansions into the numerator N(x)=x+sinxxcosxtanxN(x) = x+\sin x-x \cos x-\tan x:

N(x)=x+(xx36+x5120)x(1x22+x424)(x+x33+2x515+)N(x) = x + \left(x - \frac{x^3}{6} + \frac{x^5}{120} - \dots\right) - x\left(1 - \frac{x^2}{2} + \frac{x^4}{24} - \dots\right) - \left(x + \frac{x^3}{3} + \frac{2x^5}{15} + \dots\right)

Expand the terms:

N(x)=x+xx36+x5120x+x32x524+xx332x515N(x) = x + x - \frac{x^3}{6} + \frac{x^5}{120} - \dots - x + \frac{x^3}{2} - \frac{x^5}{24} + \dots - x - \frac{x^3}{3} - \frac{2x^5}{15} - \dots

Group terms by powers of xx:

Coefficient of xx: 1+111=01 + 1 - 1 - 1 = 0

Coefficient of x3x^3: 16+1213=1+326=06=0-\frac{1}{6} + \frac{1}{2} - \frac{1}{3} = \frac{-1 + 3 - 2}{6} = \frac{0}{6} = 0

Coefficient of x5x^5: 1120124215=1120512016120=1516120=20120=16\frac{1}{120} - \frac{1}{24} - \frac{2}{15} = \frac{1}{120} - \frac{5}{120} - \frac{16}{120} = \frac{1 - 5 - 16}{120} = \frac{-20}{120} = -\frac{1}{6}

So, the numerator N(x)N(x) simplifies to:

N(x)=x56+O(x7)N(x) = -\frac{x^5}{6} + O(x^7)

Now, the limit becomes:

limx0x56+O(x7)xn\lim_{x\to 0} \frac{-\frac{x^5}{6} + O(x^7)}{x^{n}}

For this limit to exist and be a non-zero finite value, the lowest power of xx in the numerator must match the power in the denominator. Therefore, nn must be 5.

In this case, the limit evaluates to:

limx0x56x5=16\lim_{x\to 0} \frac{-\frac{x^5}{6}}{x^{5}} = -\frac{1}{6}

This is a non-zero finite value.

Thus, the value of nn is 5.