Solveeit Logo

Question

Physics Question on Laws of thermodynamics

22 moles of an ideal monatomic gas is carried from a state (P0,V0)(P_0, V_0) to a state (2P0,2V0)(2P_0, 2V_0) along a straight line path in a P-V diagram. The amount of heat absorbed by the gas in the process is given by

A

3P0V03P_{0} V_{0}

B

92P0V0\frac{9}{2}P_{0} V_{0}

C

6P0V06P_{0} V_{0}

D

32P0V0\frac{3}{2}P_{0} V_{0}

Answer

6P0V06P_{0} V_{0}

Explanation

Solution

The internal energy
ΔU=nCvΔT\Delta U=n C_{v} \Delta T
Cv=C_{v}= Specific heat of gas at constant volume
ΔU=n3R2(4p0V0nRp0V0nR)\Rightarrow \Delta U =n \cdot \frac{3 R}{2}\left(\frac{4 p_{0} V_{0}}{n R}-\frac{p_{0} V_{0}}{n R}\right)
=n3R2(4p0V0p0V0nR)=n \cdot \frac{3 R}{2}\left(\frac{4 p_{0} V_{0}-p_{0} V_{0}}{n R}\right)
=n3R23p0V0nR=n \cdot \frac{3 R}{2} \cdot \frac{3 p_{0} V_{0}}{n R}
=92p0V0=\frac{9}{2} p_{0} V_{0} \ldots(i)
Work done by the gas
W=(2p0+p0)V02=3p0V02W=\left(2 p_{0}+p_{0}\right) \frac{V_{0}}{2}=\frac{3 p_{0} V_{0}}{2}\ldots(ii)
From first law of thermodynamics,
ΔQ=dW+dU\Delta Q =d W+d U
=3p0V02+92p0V0=\frac{3 p_{0} V_{0}}{2}+\frac{9}{2} p_{0} V_{0}
[from Eqs. (i) and (ii)]
=3p0V02+92p0V0=\frac{3 p_{0} V_{0}}{2}+\frac{9}{2} p_{0} V_{0}
=12p0V02=6p0V0=\frac{12 p_{0} V_{0}}{2}=6 p_{0} V_{0}