Solveeit Logo

Question

Question: $\lim_{x \to 0} \frac{ln(1+x)-x}{x^2}$...

limx0ln(1+x)xx2\lim_{x \to 0} \frac{ln(1+x)-x}{x^2}

Answer

12-\frac{1}{2}

Explanation

Solution

The limit is of the form 00\frac{0}{0} as x0x \to 0. Applying L'Hopital's Rule twice:

limx0ln(1+x)xx2=limx011+x12x=limx01(1+x)22=12\lim_{x \to 0} \frac{\ln(1+x)-x}{x^2} = \lim_{x \to 0} \frac{\frac{1}{1+x}-1}{2x} = \lim_{x \to 0} \frac{-\frac{1}{(1+x)^2}}{2} = -\frac{1}{2}.

Alternatively, using the Taylor expansion ln(1+x)=xx22+O(x3)\ln(1+x) = x - \frac{x^2}{2} + O(x^3), the expression becomes (xx22+O(x3))xx2=x22+O(x3)x2=12+O(x)\frac{(x - \frac{x^2}{2} + O(x^3)) - x}{x^2} = \frac{-\frac{x^2}{2} + O(x^3)}{x^2} = -\frac{1}{2} + O(x), which tends to 12-\frac{1}{2} as x0x \to 0.