Solveeit Logo

Question

Question: Let $y(x) = (1+x)(1+x^2)(1+x^4)(1+x^8)(1+x^{16})$. Then $y' - y''$ at $x = -1$ is equal to...

Let y(x)=(1+x)(1+x2)(1+x4)(1+x8)(1+x16)y(x) = (1+x)(1+x^2)(1+x^4)(1+x^8)(1+x^{16}). Then yyy' - y'' at x=1x = -1 is equal to

A

976

B

464

C

496

D

944

Answer

496

Explanation

Solution

  1. Simplify y(x)y(x): Multiply y(x)y(x) by (1x)(1-x) to get (1x)y(x)=1x32(1-x)y(x) = 1-x^{32}.
  2. Differentiate implicitly:
    • First derivative: y(x)+(1x)y(x)=32x31-y(x) + (1-x)y'(x) = -32x^{31}.
    • Second derivative: 2y(x)+(1x)y(x)=992x30-2y'(x) + (1-x)y''(x) = -992x^{30}.
  3. Evaluate at x=1x=-1:
    • y(1)=0y(-1) = 0 (due to the (1+x)(1+x) factor).
    • Substitute y(1)=0y(-1)=0 into the first derivative equation to find y(1)=16y'(-1) = 16.
    • Substitute y(1)=16y'(-1)=16 into the second derivative equation to find y(1)=480y''(-1) = -480.
  4. Calculate y(1)y(1)y'(-1) - y''(-1): 16(480)=49616 - (-480) = 496.