Solveeit Logo

Question

Question: Let two circles $C_1$ and $C_2$ of radii 2 and 4 be tangent at point P and tangent to a common strai...

Let two circles C1C_1 and C2C_2 of radii 2 and 4 be tangent at point P and tangent to a common straight line (not passing through P) at points Q and R, then value of PQ2+QR2+RP2PQ^2 + QR^2 + RP^2 is-

A

48

B

56

C

64

D

72

Answer

64

Explanation

Solution

Let r1r_1 and r2r_2 be the radii of the two circles C1C_1 and C2C_2, respectively. We are given r1=2r_1 = 2 and r2=4r_2 = 4. Let the common tangent line be L, and let Q and R be the points of tangency of C1C_1 and C2C_2 with L, respectively. The distance between the points of tangency Q and R on the common tangent line is given by the formula QR=2r1r2QR = 2\sqrt{r_1r_2}. So, QR2=(2r1r2)2=4r1r2QR^2 = (2\sqrt{r_1r_2})^2 = 4r_1r_2.

Let P be the point of tangency between the two circles. Let O1O_1 and O2O_2 be the centers of C1C_1 and C2C_2. The distance between the centers is O1O2=r1+r2O_1O_2 = r_1 + r_2. Consider a coordinate system where the line L is the x-axis. Let Q be at the origin (0,0)(0,0). Then RR is at (QR,0)(QR, 0). The centers of the circles are O1=(0,r1)O_1 = (0, r_1) and O2=(QR,r2)O_2 = (QR, r_2). The distance O1O22=(QR0)2+(r2r1)2=QR2+(r2r1)2O_1O_2^2 = (QR - 0)^2 + (r_2 - r_1)^2 = QR^2 + (r_2 - r_1)^2. We also know O1O2=r1+r2O_1O_2 = r_1 + r_2, so (r1+r2)2=QR2+(r2r1)2(r_1 + r_2)^2 = QR^2 + (r_2 - r_1)^2. r12+2r1r2+r22=QR2+r222r1r2+r12r_1^2 + 2r_1r_2 + r_2^2 = QR^2 + r_2^2 - 2r_1r_2 + r_1^2. 4r1r2=QR24r_1r_2 = QR^2, which confirms QR=2r1r2QR = 2\sqrt{r_1r_2}.

Let P' be the projection of P onto the line L. The coordinates of P can be found using the section formula, as P divides the segment O1O2O_1O_2 in the ratio r1:r2r_1:r_2. The y-coordinate of P (which is the height of P above L, let's call it hh) is h=r2y1+r1y2r1+r2=r2r1+r1r2r1+r2=2r1r2r1+r2h = \frac{r_2 y_1 + r_1 y_2}{r_1+r_2} = \frac{r_2 r_1 + r_1 r_2}{r_1+r_2} = \frac{2r_1r_2}{r_1+r_2}. The x-coordinate of P' is xP=r2x1+r1x2r1+r2=r20+r1QRr1+r2=r1QRr1+r2x_{P'} = \frac{r_2 x_1 + r_1 x_2}{r_1+r_2} = \frac{r_2 \cdot 0 + r_1 \cdot QR}{r_1+r_2} = \frac{r_1 QR}{r_1+r_2}. This xPx_{P'} is the distance QPQP'.

Now we can calculate PQ2PQ^2 using the Pythagorean theorem: PQ2=(QP)2+h2PQ^2 = (QP')^2 + h^2. PQ2=(r1QRr1+r2)2+(2r1r2r1+r2)2PQ^2 = \left(\frac{r_1 QR}{r_1+r_2}\right)^2 + \left(\frac{2r_1r_2}{r_1+r_2}\right)^2. Since QR2=4r1r2QR^2 = 4r_1r_2, we have: PQ2=r12(4r1r2)(r1+r2)2+4r12r22(r1+r2)2=4r13r2+4r12r22(r1+r2)2PQ^2 = \frac{r_1^2 (4r_1r_2)}{(r_1+r_2)^2} + \frac{4r_1^2r_2^2}{(r_1+r_2)^2} = \frac{4r_1^3r_2 + 4r_1^2r_2^2}{(r_1+r_2)^2}.

Similarly, the distance RPRP' is QRQP=2r1r2r12r1r2r1+r2=2r1r2(1r1r1+r2)=2r1r2(r1+r2r1r1+r2)=2r2r1r2r1+r2QR - QP' = 2\sqrt{r_1r_2} - \frac{r_1 2\sqrt{r_1r_2}}{r_1+r_2} = 2\sqrt{r_1r_2} \left(1 - \frac{r_1}{r_1+r_2}\right) = 2\sqrt{r_1r_2} \left(\frac{r_1+r_2-r_1}{r_1+r_2}\right) = \frac{2r_2\sqrt{r_1r_2}}{r_1+r_2}. So RP=r2QRr1+r2RP' = \frac{r_2 QR}{r_1+r_2}. Then RP2=(RP)2+h2RP^2 = (RP')^2 + h^2. RP2=(r2QRr1+r2)2+(2r1r2r1+r2)2=r22(4r1r2)(r1+r2)2+4r12r22(r1+r2)2=4r1r23+4r12r22(r1+r2)2RP^2 = \left(\frac{r_2 QR}{r_1+r_2}\right)^2 + \left(\frac{2r_1r_2}{r_1+r_2}\right)^2 = \frac{r_2^2 (4r_1r_2)}{(r_1+r_2)^2} + \frac{4r_1^2r_2^2}{(r_1+r_2)^2} = \frac{4r_1r_2^3 + 4r_1^2r_2^2}{(r_1+r_2)^2}.

Now, let's sum PQ2+QR2+RP2PQ^2 + QR^2 + RP^2: PQ2+RP2=4r13r2+4r12r22+4r1r23+4r12r22(r1+r2)2=4r1r2(r12+2r1r2+r22)(r1+r2)2=4r1r2(r1+r2)2(r1+r2)2=4r1r2PQ^2 + RP^2 = \frac{4r_1^3r_2 + 4r_1^2r_2^2 + 4r_1r_2^3 + 4r_1^2r_2^2}{(r_1+r_2)^2} = \frac{4r_1r_2(r_1^2 + 2r_1r_2 + r_2^2)}{(r_1+r_2)^2} = \frac{4r_1r_2(r_1+r_2)^2}{(r_1+r_2)^2} = 4r_1r_2. So, PQ2+QR2+RP2=(PQ2+RP2)+QR2=4r1r2+4r1r2=8r1r2PQ^2 + QR^2 + RP^2 = (PQ^2 + RP^2) + QR^2 = 4r_1r_2 + 4r_1r_2 = 8r_1r_2.

Given r1=2r_1 = 2 and r2=4r_2 = 4: PQ2+QR2+RP2=8×2×4=64PQ^2 + QR^2 + RP^2 = 8 \times 2 \times 4 = 64.