Solveeit Logo

Question

Question: Let $f(x) = \frac{e^{2x}-1-2x}{x^2}$. Find $\lim_{x\to 0} f(x)$....

Let f(x)=e2x12xx2f(x) = \frac{e^{2x}-1-2x}{x^2}. Find limx0f(x)\lim_{x\to 0} f(x).

A

1

B

2

C

0

D

4

Answer

2

Explanation

Solution

To find limx0e2x12xx2\lim_{x\to 0} \frac{e^{2x}-1-2x}{x^2}, we first check the form of the limit. Substituting x=0x=0 gives e01002=110=00\frac{e^0-1-0}{0^2} = \frac{1-1}{0} = \frac{0}{0}, which is an indeterminate form.

We can use L'Hopital's Rule.

First application:

  • Differentiate numerator: ddx(e2x12x)=2e2x2\frac{d}{dx}(e^{2x}-1-2x) = 2e^{2x}-2.
  • Differentiate denominator: ddx(x2)=2x\frac{d}{dx}(x^2) = 2x.

The limit becomes limx02e2x22x\lim_{x\to 0} \frac{2e^{2x}-2}{2x}. This is still 00\frac{0}{0} at x=0x=0.

Second application of L'Hopital's Rule:

  • Differentiate numerator: ddx(2e2x2)=4e2x\frac{d}{dx}(2e^{2x}-2) = 4e^{2x}.
  • Differentiate denominator: ddx(2x)=2\frac{d}{dx}(2x) = 2.

The limit becomes limx04e2x2\lim_{x\to 0} \frac{4e^{2x}}{2}. Now, substitute x=0x=0: 4e2(0)2=4e02=4(1)2=2\frac{4e^{2(0)}}{2} = \frac{4e^0}{2} = \frac{4(1)}{2} = 2.

Alternatively, using Taylor series expansion for e2xe^{2x} around x=0x=0:

e2x=1+(2x)+(2x)22!+(2x)33!+=1+2x+4x22+8x36+=1+2x+2x2+43x3+e^{2x} = 1 + (2x) + \frac{(2x)^2}{2!} + \frac{(2x)^3}{3!} + \dots = 1 + 2x + \frac{4x^2}{2} + \frac{8x^3}{6} + \dots = 1 + 2x + 2x^2 + \frac{4}{3}x^3 + \dots

Substitute this into the expression for f(x)f(x):

f(x)=(1+2x+2x2+43x3+)12xx2f(x) = \frac{(1 + 2x + 2x^2 + \frac{4}{3}x^3 + \dots) - 1 - 2x}{x^2}

f(x)=2x2+43x3+x2f(x) = \frac{2x^2 + \frac{4}{3}x^3 + \dots}{x^2}

Factor out x2x^2 from the numerator:

f(x)=x2(2+43x+)x2f(x) = \frac{x^2(2 + \frac{4}{3}x + \dots)}{x^2}

Cancel x2x^2 (since x0x \neq 0 as x0x \to 0):

f(x)=2+43x+f(x) = 2 + \frac{4}{3}x + \dots

Now, take the limit as x0x \to 0:

limx0f(x)=limx0(2+43x+)=2\lim_{x\to 0} f(x) = \lim_{x\to 0} (2 + \frac{4}{3}x + \dots) = 2.