Solveeit Logo

Question

Question: Least value of $\frac{x^{2}y^{2}-2x^{2}y+2x^{2}+2xy-2x+1}{x^{2}y+x}$ is $\lambda$, then {where x,y $...

Least value of x2y22x2y+2x2+2xy2x+1x2y+x\frac{x^{2}y^{2}-2x^{2}y+2x^{2}+2xy-2x+1}{x^{2}y+x} is λ\lambda, then {where x,y \in R+^{+}, x2^{2}y + x \neq 0}

A

λ(0,1)\lambda \in (0,1)

B

λ[1,3)\lambda \in [1,3)

C

λ[3,4]\lambda \in [3,4]

D

λ(4,7)\lambda \in (4,7)

Answer

(A)

Explanation

Solution

The given expression is E=x2y22x2y+2x2+2xy2x+1x2y+xE = \frac{x^{2}y^{2}-2x^{2}y+2x^{2}+2xy-2x+1}{x^{2}y+x}.

The numerator can be factored as: x2y22x2y+2x2+2xy2x+1=(x2y2+2xy+1)2x2y2x+2x2=(xy+1)22x(xy+1)+2x2x^{2}y^{2}-2x^{2}y+2x^{2}+2xy-2x+1 = (x^2y^2+2xy+1) - 2x^2y - 2x + 2x^2 = (xy+1)^2 - 2x(xy+1) + 2x^2.

The denominator is x2y+x=x(xy+1)x^2y+x = x(xy+1).

So, the expression becomes: E=(xy+1)22x(xy+1)+2x2x(xy+1)=(xy+1)2x(xy+1)2x(xy+1)x(xy+1)+2x2x(xy+1)=xy+1x2+2xxy+1E = \frac{(xy+1)^2 - 2x(xy+1) + 2x^2}{x(xy+1)} = \frac{(xy+1)^2}{x(xy+1)} - \frac{2x(xy+1)}{x(xy+1)} + \frac{2x^2}{x(xy+1)} = \frac{xy+1}{x} - 2 + \frac{2x}{xy+1}

Let A=xy+1xA = \frac{xy+1}{x}. Since x,yR+x, y \in \mathbb{R}^{+}, x>0x > 0 and y>0y > 0. Therefore, xy>0xy > 0, so xy+1>1xy+1 > 1. Since x>0x > 0, A=xy+1x>0A = \frac{xy+1}{x} > 0.

The expression EE can be rewritten as: E=A2+2AE = A - 2 + \frac{2}{A}

To find the least value of EE, we apply the AM-GM inequality to the positive terms AA and 2A\frac{2}{A}: A+2A2A2A=22A + \frac{2}{A} \ge 2\sqrt{A \cdot \frac{2}{A}} = 2\sqrt{2}

Substituting this back into the expression for EE: E222E \ge 2\sqrt{2} - 2.

The equality holds when A=2AA = \frac{2}{A}, which means A2=2A^2 = 2. Since A>0A > 0, A=2A = \sqrt{2}.

This value is achievable. For example, if x=1x=1, then y+11=2y+\frac{1}{1} = \sqrt{2}, so y=21y = \sqrt{2}-1. Since 21.414\sqrt{2} \approx 1.414, y0.414>0y \approx 0.414 > 0. Thus, x=1,y=21x=1, y=\sqrt{2}-1 are valid positive real numbers.

The least value of the expression is λ=222\lambda = 2\sqrt{2} - 2. To determine the interval for λ\lambda: We know 21.414\sqrt{2} \approx 1.414. So, λ2×1.4142=2.8282=0.828\lambda \approx 2 \times 1.414 - 2 = 2.828 - 2 = 0.828. This value is greater than 0 and less than 1. Therefore, λ(0,1)\lambda \in (0,1).