Question
Question: $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) dx =$ Where $f(x) = \sin|x| + \cos|x|, x \in \left[-\fr...
∫−2π2πf(x)dx=
Where f(x)=sin∣x∣+cos∣x∣,x∈[−2π,2π].

A
0
B
2
C
4
D
8
Answer
4
Explanation
Solution
To evaluate the definite integral ∫−2π2πf(x)dx, where f(x)=sin∣x∣+cos∣x∣, we note that the interval of integration is symmetric about 0. Also, f(x) is an even function because f(−x)=sin∣−x∣+cos∣−x∣=sin∣x∣+cos∣x∣=f(x).
For an even function, ∫−aaf(x)dx=2∫0af(x)dx. Therefore,
∫−2π2π(sin∣x∣+cos∣x∣)dx=2∫02π(sinx+cosx)dx
Since ∣x∣=x for x∈[0,2π].
Now, we evaluate the integral:
2∫02π(sinx+cosx)dx=2[−cosx+sinx]02π=2[(−cos(2π)+sin(2π))−(−cos(0)+sin(0))]=2[(0+1)−(−1+0)]=2[1+1]=4.
Thus, the value of the integral is 4.