Solveeit Logo

Question

Question: $\int \frac{x^2+1}{x(x^2-1)} dx =$...

x2+1x(x21)dx=\int \frac{x^2+1}{x(x^2-1)} dx =

A

log x(x21)+cx(x^2-1)+c, where c is a constant of integration.

B

log (x21x)+c(\frac{x^2-1}{x})+c, where c is a constant of integration.

C

log(x21)+c(x^2-1)+c, where c is a constant of integration.

D

log(x2+1x)+c(\frac{x^2+1}{x})+c, where c is a constant of integration.

Answer

log (x21x)+c(\frac{x^2-1}{x})+c, where c is a constant of integration.

Explanation

Solution

The integral we need to solve is x2+1x(x21)dx\int \frac{x^2+1}{x(x^2-1)} dx. The denominator can be factored as x(x1)(x+1)x(x-1)(x+1). We can use partial fraction decomposition for the integrand:

x2+1x(x21)=x2+1x(x1)(x+1)=Ax+Bx1+Cx+1\frac{x^2+1}{x(x^2-1)} = \frac{x^2+1}{x(x-1)(x+1)} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{x+1}

Multiplying both sides by x(x1)(x+1)x(x-1)(x+1):

x2+1=A(x1)(x+1)+Bx(x+1)+Cx(x1)x^2+1 = A(x-1)(x+1) + Bx(x+1) + Cx(x-1)

Substituting the roots of the denominator:

x=0    1=A(1)(1)    A=1x=0 \implies 1 = A(-1)(1) \implies A = -1

x=1    2=B(1)(2)    B=1x=1 \implies 2 = B(1)(2) \implies B = 1

x=1    2=C(1)(2)    C=1x=-1 \implies 2 = C(-1)(-2) \implies C = 1

So, x2+1x(x21)=1x+1x1+1x+1\frac{x^2+1}{x(x^2-1)} = \frac{-1}{x} + \frac{1}{x-1} + \frac{1}{x+1}

Integrating each term:

x2+1x(x21)dx=(1x+1x1+1x+1)dx=logx+logx1+logx+1+C\int \frac{x^2+1}{x(x^2-1)} dx = \int \left(\frac{-1}{x} + \frac{1}{x-1} + \frac{1}{x+1}\right) dx = -\log|x| + \log|x-1| + \log|x+1| + C

Using logarithm properties:

logx+logx1+logx+1=logx21x+C-\log|x| + \log|x-1| + \log|x+1| = \log\left|\frac{x^2-1}{x}\right| + C