Solveeit Logo

Question

Question: $\int (1+2x+3x^2+4x^3+...)dx,(0<|x|<1)$...

(1+2x+3x2+4x3+...)dx,(0<x<1)\int (1+2x+3x^2+4x^3+...)dx,(0<|x|<1)

Answer

11x+C\frac{1}{1-x}+C

Explanation

Solution

The given series 1+2x+3x2+4x3+...1+2x+3x^2+4x^3+... is the derivative of the geometric series 1+x+x2+x3+...=11x1+x+x^2+x^3+... = \frac{1}{1-x}.

Thus, the series can be written as ddx(11x)=1(1x)2\frac{d}{dx}\left(\frac{1}{1-x}\right) = \frac{1}{(1-x)^2}.

The integral becomes 1(1x)2dx\int \frac{1}{(1-x)^2} dx.

Using substitution u=1xu=1-x, du=dxdu=-dx, the integral transforms to u2du-\int u^{-2} du.

This evaluates to (u1)+C=1u+C-(-u^{-1}) + C = \frac{1}{u} + C.

Substituting back u=1xu=1-x, the result is 11x+C\frac{1}{1-x} + C.