Solveeit Logo

Question

Question: $\int (1 - \cos x) \csc^2 x \, dx$...

(1cosx)csc2xdx\int (1 - \cos x) \csc^2 x \, dx

Answer

tanx2+C\tan \frac{x}{2} + C

Explanation

Solution

The integral (1cosx)csc2xdx\int (1 - \cos x) \csc^2 x \, dx is solved by first rewriting csc2x\csc^2 x as 1sin2x\frac{1}{\sin^2 x}. Then, sin2x\sin^2 x is replaced by 1cos2x1 - \cos^2 x, which factors as (1cosx)(1+cosx)(1 - \cos x)(1 + \cos x). Cancelling the (1cosx)(1 - \cos x) term simplifies the integrand to 11+cosx\frac{1}{1 + \cos x}. Using the half-angle identity 1+cosx=2cos2x21 + \cos x = 2\cos^2 \frac{x}{2}, the integrand becomes 12cos2x2=12sec2x2\frac{1}{2\cos^2 \frac{x}{2}} = \frac{1}{2}\sec^2 \frac{x}{2}. Finally, integrating 12sec2x2\frac{1}{2}\sec^2 \frac{x}{2} with respect to xx yields tanx2+C\tan \frac{x}{2} + C.