Solveeit Logo

Question

Question: In the expansion of $\left[\frac{1}{a}+a^{\log_{10}a}\right]^5$, if the value of the third term is 1...

In the expansion of [1a+alog10a]5\left[\frac{1}{a}+a^{\log_{10}a}\right]^5, if the value of the third term is 1000, then the value of aa is

Answer

a = 100 or a = 1/sqrt(10)

Explanation

Solution

The general term in the binomial expansion of (x+y)n(x+y)^n is given by Tr+1=(nr)xnryrT_{r+1} = \binom{n}{r} x^{n-r} y^r.

In this case, x=1ax = \frac{1}{a}, y=alog10ay = a^{\log_{10}a}, and n=5n = 5. We are looking for the third term, so r=2r = 2.

T3=(52)(1a)52(alog10a)2=10a3a2log10a=10a2log10a3T_3 = \binom{5}{2} \left(\frac{1}{a}\right)^{5-2} \left(a^{\log_{10}a}\right)^2 = 10 \cdot a^{-3} \cdot a^{2\log_{10}a} = 10 \cdot a^{2\log_{10}a - 3}.

Given that T3=1000T_3 = 1000, we have:

10a2log10a3=100010 \cdot a^{2\log_{10}a - 3} = 1000

a2log10a3=100a^{2\log_{10}a - 3} = 100

Taking log10\log_{10} of both sides:

(2log10a3)log10a=log10100=2(2\log_{10}a - 3) \log_{10}a = \log_{10}100 = 2

Let t=log10at = \log_{10}a, then:

(2t3)t=2(2t - 3)t = 2

2t23t2=02t^2 - 3t - 2 = 0

(2t+1)(t2)=0(2t + 1)(t - 2) = 0

So, t=12t = -\frac{1}{2} or t=2t = 2.

If t=12t = -\frac{1}{2}, then log10a=12\log_{10}a = -\frac{1}{2}, so a=101/2=110a = 10^{-1/2} = \frac{1}{\sqrt{10}}.

If t=2t = 2, then log10a=2\log_{10}a = 2, so a=102=100a = 10^2 = 100.

Therefore, the possible values for aa are 100100 and 110\frac{1}{\sqrt{10}}.