Solveeit Logo

Question

Question: If the normal at the point $P(\Theta)$ to the ellipse $\frac{x^2}{3}+\frac{y^2}{2}=1$ intersects it ...

If the normal at the point P(Θ)P(\Theta) to the ellipse x23+y22=1\frac{x^2}{3}+\frac{y^2}{2}=1 intersects it again at the point Q(2Θ)Q(2\Theta), then find cosΘ\cos\Theta.

A

32\frac{3}{2}

B

1-1

C

12\frac{1}{2}

D

12-\frac{1}{2}

Answer

1-1

Explanation

Solution

The equation of the ellipse is x23+y22=1\frac{x^2}{3}+\frac{y^2}{2}=1, so a2=3a^2=3 and b2=2b^2=2. The equation of the normal to the ellipse x2a2+y2b2=1\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 at the point (acosΘ,bsinΘ)(a\cos\Theta, b\sin\Theta) is axcosΘbysinΘ=a2b2\frac{ax}{\cos\Theta} - \frac{by}{\sin\Theta} = a^2-b^2. Substituting a2=3a^2=3 and b2=2b^2=2, the normal at P(Θ)P(\Theta) is 3xcosΘ2ysinΘ=1\frac{\sqrt{3}x}{\cos\Theta} - \frac{\sqrt{2}y}{\sin\Theta} = 1. Since the normal intersects the ellipse again at Q(2Θ)Q(2\Theta), the coordinates of QQ satisfy the normal equation: 3(3cos(2Θ))cosΘ2(2sin(2Θ))sinΘ=1\frac{\sqrt{3}(\sqrt{3}\cos(2\Theta))}{\cos\Theta} - \frac{\sqrt{2}(\sqrt{2}\sin(2\Theta))}{\sin\Theta} = 1 3cos(2Θ)cosΘ2sin(2Θ)sinΘ=1\frac{3\cos(2\Theta)}{\cos\Theta} - \frac{2\sin(2\Theta)}{\sin\Theta} = 1 Using double angle formulas: 3(2cos2Θ1)cosΘ2(2sinΘcosΘ)sinΘ=1\frac{3(2\cos^2\Theta - 1)}{\cos\Theta} - \frac{2(2\sin\Theta\cos\Theta)}{\sin\Theta} = 1 3(2cos2Θ1)cosΘ4cosΘ=1\frac{3(2\cos^2\Theta - 1)}{\cos\Theta} - 4\cos\Theta = 1 6cos2Θ34cos2Θ=cosΘ6\cos^2\Theta - 3 - 4\cos^2\Theta = \cos\Theta 2cos2ΘcosΘ3=02\cos^2\Theta - \cos\Theta - 3 = 0 (2cosΘ3)(cosΘ+1)=0(2\cos\Theta - 3)(\cos\Theta + 1) = 0 cosΘ=32\cos\Theta = \frac{3}{2} or cosΘ=1\cos\Theta = -1. Since 1cosΘ1-1 \le \cos\Theta \le 1, we have cosΘ=1\cos\Theta = -1.