Question
Question: If the normal at the point $P(\Theta)$ to the ellipse $\frac{x^2}{3}+\frac{y^2}{2}=1$ intersects it ...
If the normal at the point P(Θ) to the ellipse 3x2+2y2=1 intersects it again at the point Q(2Θ), then find cosΘ.

A
23
B
−1
C
21
D
−21
Answer
−1
Explanation
Solution
The equation of the ellipse is 3x2+2y2=1, so a2=3 and b2=2. The equation of the normal to the ellipse a2x2+b2y2=1 at the point (acosΘ,bsinΘ) is cosΘax−sinΘby=a2−b2. Substituting a2=3 and b2=2, the normal at P(Θ) is cosΘ3x−sinΘ2y=1. Since the normal intersects the ellipse again at Q(2Θ), the coordinates of Q satisfy the normal equation: cosΘ3(3cos(2Θ))−sinΘ2(2sin(2Θ))=1 cosΘ3cos(2Θ)−sinΘ2sin(2Θ)=1 Using double angle formulas: cosΘ3(2cos2Θ−1)−sinΘ2(2sinΘcosΘ)=1 cosΘ3(2cos2Θ−1)−4cosΘ=1 6cos2Θ−3−4cos2Θ=cosΘ 2cos2Θ−cosΘ−3=0 (2cosΘ−3)(cosΘ+1)=0 cosΘ=23 or cosΘ=−1. Since −1≤cosΘ≤1, we have cosΘ=−1.
