Solveeit Logo

Question

Question: If $\sin \alpha$ & $\cos \alpha$ are the roots of the equation $ax^2 + bx + c = 0$ then...

If sinα\sin \alpha & cosα\cos \alpha are the roots of the equation ax2+bx+c=0ax^2 + bx + c = 0 then

A

a^2 - b^2 + 2ac = 0

B

a^2 + b^2 + 2ac = 0

C

a^2 - b^2 - 2ac = 0

D

a^2 + b^2 - 2ac = 0

Answer

a^2 - b^2 + 2ac = 0

Explanation

Solution

Given roots are sinα\sin \alpha and cosα\cos \alpha for ax2+bx+c=0ax^2 + bx + c = 0. Using Vieta's formulas: sinα+cosα=b/a\sin \alpha + \cos \alpha = -b/a, sinαcosα=c/a\sin \alpha \cos \alpha = c/a. Square the sum: (sinα+cosα)2=(b/a)2(\sin \alpha + \cos \alpha)^2 = (-b/a)^2. Use identity (sinα+cosα)2=1+2sinαcosα(\sin \alpha + \cos \alpha)^2 = 1 + 2 \sin \alpha \cos \alpha. Substitute: 1+2(c/a)=b2/a21 + 2(c/a) = b^2/a^2. Multiply by a2a^2 and rearrange: a2+2ac=b2    a2b2+2ac=0a^2 + 2ac = b^2 \implies a^2 - b^2 + 2ac = 0.