Question
Question: If $\sin \alpha$ & $\cos \alpha$ are the roots of the equation $ax^2 + bx + c = 0$ then...
If sinα & cosα are the roots of the equation ax2+bx+c=0 then

A
a^2 - b^2 + 2ac = 0
B
a^2 + b^2 + 2ac = 0
C
a^2 - b^2 - 2ac = 0
D
a^2 + b^2 - 2ac = 0
Answer
a^2 - b^2 + 2ac = 0
Explanation
Solution
Given roots are sinα and cosα for ax2+bx+c=0. Using Vieta's formulas: sinα+cosα=−b/a, sinαcosα=c/a. Square the sum: (sinα+cosα)2=(−b/a)2. Use identity (sinα+cosα)2=1+2sinαcosα. Substitute: 1+2(c/a)=b2/a2. Multiply by a2 and rearrange: a2+2ac=b2⟹a2−b2+2ac=0.
