Solveeit Logo

Question

Question: If $f: [2, \infty) \to [8, \infty)$ is a surjective function defined by $f(x) = x^2 - (p-2)x + 3p - ...

If f:[2,)[8,)f: [2, \infty) \to [8, \infty) is a surjective function defined by f(x)=x2(p2)x+3p2f(x) = x^2 - (p-2)x + 3p - 2, pRp \in \mathbb{R} then sum of values of pp is m+nm + \sqrt{n}, where m,nNm, n \in \mathbb{N}. Find the value of nm\frac{n}{m}.

A

2

B

3

C

4

D

5

Answer

2

Explanation

Solution

The function f(x)=x2(p2)x+3p2f(x) = x^2 - (p-2)x + 3p - 2 is a quadratic with domain [2,)[2, \infty) and codomain [8,)[8, \infty). For surjectivity, the minimum value of f(x)f(x) on [2,)[2, \infty) must be 88. The vertex of the parabola is at xv=p22x_v = \frac{p-2}{2}.

Case 1: Vertex within the domain (xv2    p6x_v \ge 2 \implies p \ge 6). The minimum value is f(xv)=(p2)24+3p2f(x_v) = -\frac{(p-2)^2}{4} + 3p - 2. Setting f(xv)=8f(x_v) = 8: (p2)24+3p2=8    p216p+44=0-\frac{(p-2)^2}{4} + 3p - 2 = 8 \implies p^2 - 16p + 44 = 0. The solutions are p=16±2561762=16±802=16±452=8±25p = \frac{16 \pm \sqrt{256 - 176}}{2} = \frac{16 \pm \sqrt{80}}{2} = \frac{16 \pm 4\sqrt{5}}{2} = 8 \pm 2\sqrt{5}. Since p6p \ge 6, we check the values: 8+25>68 + 2\sqrt{5} > 6 (valid). 82584.47=3.53<68 - 2\sqrt{5} \approx 8 - 4.47 = 3.53 < 6 (invalid). So, p=8+25p = 8 + 2\sqrt{5} is a valid value.

Case 2: Vertex to the left of the domain (xv<2    p<6x_v < 2 \implies p < 6). The function is increasing on [2,)[2, \infty). The minimum value is f(2)f(2). f(2)=(2)2(p2)(2)+3p2=42p+4+3p2=p+6f(2) = (2)^2 - (p-2)(2) + 3p - 2 = 4 - 2p + 4 + 3p - 2 = p+6. Setting f(2)=8f(2) = 8: p+6=8    p=2p+6 = 8 \implies p=2. Since p<6p < 6, p=2p=2 is a valid value.

The possible values of pp are 8+258 + 2\sqrt{5} and 22. The sum of these values is (8+25)+2=10+25(8 + 2\sqrt{5}) + 2 = 10 + 2\sqrt{5}. To match the form m+nm + \sqrt{n}, we rewrite 25=4×5=202\sqrt{5} = \sqrt{4 \times 5} = \sqrt{20}. So, the sum is 10+2010 + \sqrt{20}. Comparing with m+nm + \sqrt{n}, we get m=10m=10 and n=20n=20. Both are natural numbers. The value to find is nm=2010=2\frac{n}{m} = \frac{20}{10} = 2.