Solveeit Logo

Question

Question: If f : [2, ∞) → [8, ∞) is a surjective function defined by f (x) = x² - (p-2)x + 3p - 2, p ∈ R then ...

If f : [2, ∞) → [8, ∞) is a surjective function defined by f (x) = x² - (p-2)x + 3p - 2, p ∈ R then sum of values of p is m + √n, where m, n ∈ N. Find the value of nm\frac{n}{m}.

A

The function is surjective, meaning its range on the given domain is equal to its codomain.

B

The vertex of the parabola y=x2(p2)x+3p2y = x^2 - (p-2)x + 3p - 2 is at xv=p22x_v = \frac{p-2}{2}.

C

Case 1: xv2x_v \ge 2 (i.e., p6p \ge 6). The minimum value is f(xv)=p24+4p3f(x_v) = -\frac{p^2}{4} + 4p - 3. Setting this to 8 yields p216p+44=0p^2 - 16p + 44 = 0, with solutions p=8±25p = 8 \pm 2\sqrt{5}. Only p=8+25p = 8 + 2\sqrt{5} satisfies p6p \ge 6.

D

Case 2: xv<2x_v < 2 (i.e., p<6p < 6). The minimum value is f(2)=p+6f(2) = p+6. Setting this to 8 yields p=2p=2, which satisfies p<6p < 6.

E

The sum of the valid values of p is (8+25)+2=10+25=10+20(8 + 2\sqrt{5}) + 2 = 10 + 2\sqrt{5} = 10 + \sqrt{20}.

F

Given the sum is m+nm + \sqrt{n}, we have m=10m=10 and n=20n=20. Therefore, nm=2010=2\frac{n}{m} = \frac{20}{10} = 2.

Answer

The sum of the valid values of p is (8+25)+2=10+25=10+20(8 + 2\sqrt{5}) + 2 = 10 + 2\sqrt{5} = 10 + \sqrt{20}. Given the sum is m+nm + \sqrt{n}, we have m=10m=10 and n=20n=20. Therefore, nm=2010=2\frac{n}{m} = \frac{20}{10} = 2.

Explanation

Solution

The problem requires finding values of pp such that the function f(x)=x2(p2)x+3p2f(x) = x^2 - (p-2)x + 3p - 2 is surjective from [2,)[2, \infty) to [8,)[8, \infty). This means the minimum value of f(x)f(x) on the domain [2,)[2, \infty) must be exactly 8.

The function is a parabola opening upwards. The vertex is at xv=p22x_v = \frac{p-2}{2}.

Case 1: Vertex is in the domain (xv2x_v \ge 2) This implies p222\frac{p-2}{2} \ge 2, so p24p-2 \ge 4, which means p6p \ge 6. In this case, the minimum value of f(x)f(x) is at the vertex: f(xv)=(p22)2(p2)(p22)+3p2f(x_v) = \left(\frac{p-2}{2}\right)^2 - (p-2)\left(\frac{p-2}{2}\right) + 3p - 2 f(xv)=(p2)24+3p2f(x_v) = -\frac{(p-2)^2}{4} + 3p - 2 f(xv)=p24p+44+3p2f(x_v) = -\frac{p^2 - 4p + 4}{4} + 3p - 2 f(xv)=p24+p1+3p2=p24+4p3f(x_v) = -\frac{p^2}{4} + p - 1 + 3p - 2 = -\frac{p^2}{4} + 4p - 3. Setting the minimum value to 8: p24+4p3=8-\frac{p^2}{4} + 4p - 3 = 8 p24+4p11=0-\frac{p^2}{4} + 4p - 11 = 0 Multiplying by -4: p216p+44=0p^2 - 16p + 44 = 0. Using the quadratic formula: p=16±(16)24(1)(44)2=16±2561762=16±802=16±452=8±25p = \frac{16 \pm \sqrt{(-16)^2 - 4(1)(44)}}{2} = \frac{16 \pm \sqrt{256 - 176}}{2} = \frac{16 \pm \sqrt{80}}{2} = \frac{16 \pm 4\sqrt{5}}{2} = 8 \pm 2\sqrt{5}. We must satisfy p6p \ge 6. p1=8+25p_1 = 8 + 2\sqrt{5}: Since 25>02\sqrt{5} > 0, p1>8p_1 > 8, so p16p_1 \ge 6 is satisfied. p2=825p_2 = 8 - 2\sqrt{5}: Since 25=202\sqrt{5} = \sqrt{20} and 4<20<54 < \sqrt{20} < 5, 85<p2<848-5 < p_2 < 8-4, so 3<p2<43 < p_2 < 4. This does not satisfy p6p \ge 6. So, p=8+25p = 8 + 2\sqrt{5} is a valid solution from this case.

Case 2: Vertex is to the left of the domain (xv<2x_v < 2) This implies p22<2\frac{p-2}{2} < 2, so p2<4p-2 < 4, which means p<6p < 6. In this case, f(x)f(x) is strictly increasing on [2,)[2, \infty), and the minimum value occurs at x=2x=2: f(2)=(2)2(p2)(2)+3p2f(2) = (2)^2 - (p-2)(2) + 3p - 2 f(2)=42p+4+3p2=p+6f(2) = 4 - 2p + 4 + 3p - 2 = p + 6. Setting the minimum value to 8: p+6=8    p=2p + 6 = 8 \implies p = 2. This satisfies the condition p<6p < 6. So, p=2p=2 is a valid solution.

The possible values for pp are 8+258 + 2\sqrt{5} and 22. The sum of these values is (8+25)+2=10+25(8 + 2\sqrt{5}) + 2 = 10 + 2\sqrt{5}. The problem states this sum is m+nm + \sqrt{n}, where m,nNm, n \in \mathbb{N}. We rewrite 10+2510 + 2\sqrt{5} as 10+22×5=10+4×5=10+2010 + \sqrt{2^2 \times 5} = 10 + \sqrt{4 \times 5} = 10 + \sqrt{20}. Comparing 10+2010 + \sqrt{20} with m+nm + \sqrt{n}, we have m=10m = 10 and n=20n = 20. Both are natural numbers. The value to find is nm=2010=2\frac{n}{m} = \frac{20}{10} = 2.