Solveeit Logo

Question

Question: If circle whose diameter is major axis of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b) me...

If circle whose diameter is major axis of ellipse x2a2+y2b2=1\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b) meets minor axis at point P & orthocentre of PF1F2\triangle PF_1F_2 lies on ellipse where F1F_1 & F2F_2 are focii of ellipse, then square of eccentricity of ellipse is-

A

2 sin18°

B

2 sin15°

C

sin45°

D

sin60°

Answer

2 sin18°

Explanation

Solution

The ellipse is x2a2+y2b2=1\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. The foci are F1(ae,0)F_1(-ae, 0) and F2(ae,0)F_2(ae, 0). The circle with the major axis as diameter has equation x2+y2=a2x^2 + y^2 = a^2. This circle meets the minor axis (y-axis) at P(0,a)P(0, a). The orthocentre of PF1F2\triangle PF_1F_2 is H(0,ae2)H(0, ae^2). For H to lie on the ellipse, we have (ae2)2b2=1\frac{(ae^2)^2}{b^2} = 1, which implies a2e4=b2a^2e^4 = b^2. Using b2=a2(1e2)b^2 = a^2(1-e^2), we get e4=1e2e^4 = 1-e^2, so e4+e21=0e^4 + e^2 - 1 = 0. Solving for e2e^2 gives e2=1+52e^2 = \frac{-1+\sqrt{5}}{2}. We know that sin18=514\sin 18^\circ = \frac{\sqrt{5}-1}{4}, so 2sin18=5122\sin 18^\circ = \frac{\sqrt{5}-1}{2}. Thus, e2=2sin18e^2 = 2\sin 18^\circ.