Solveeit Logo

Question

Question: If circle whose diameter is major axis of ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ (a>b) meets mi...

If circle whose diameter is major axis of ellipse x2a2+y2b2=1\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 (a>b) meets minor axis at point P & orthocentre of PF1F2\triangle PF_1F_2 lies on ellipse where F1F_1 & F2F_2 are focii of ellipse, then square of eccentricity of ellipse is-

A

2 sin18°

B

2 sin15°

C

sin45°

D

sin60°

Answer

2 sin18°

Explanation

Solution

Let the ellipse be x2a2+y2b2=1\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 with a>ba>b. The foci are F1(c,0)F_1(-c,0) and F2(c,0)F_2(c,0), where c2=a2(1e2)c^2 = a^2(1-e^2). The circle with the major axis as diameter has equation x2+y2=a2x^2+y^2=a^2. This circle meets the minor axis (y-axis) at P(0,±a)P(0, \pm a). Let's take P(0,a)P(0, a). The orthocentre HH of PF1F2\triangle PF_1F_2 with P(0,a)P(0, a), F1(c,0)F_1(-c, 0), F2(c,0)F_2(c, 0) is found to be H(0,c2a)H(0, \frac{c^2}{a}). Since HH lies on the ellipse, we substitute its coordinates into the ellipse equation: 02a2+(c2/a)2b2=1    c4a2b2=1    c4=a2b2\frac{0^2}{a^2} + \frac{(c^2/a)^2}{b^2} = 1 \implies \frac{c^4}{a^2 b^2} = 1 \implies c^4 = a^2 b^2. Using c2=a2e2c^2 = a^2e^2 and b2=a2(1e2)b^2 = a^2(1-e^2): (a2e2)2=a2(a2(1e2))(a^2e^2)^2 = a^2 (a^2(1-e^2)) a4e4=a4(1e2)a^4e^4 = a^4(1-e^2) e4=1e2e^4 = 1-e^2. Let x=e2x = e^2. Then x2=1x    x2+x1=0x^2 = 1-x \implies x^2+x-1=0. Solving for xx: x=1±124(1)(1)2=1±52x = \frac{-1 \pm \sqrt{1^2 - 4(1)(-1)}}{2} = \frac{-1 \pm \sqrt{5}}{2}. Since e2>0e^2 > 0, we take e2=1+52e^2 = \frac{-1+\sqrt{5}}{2}. We know that sin18=514\sin 18^\circ = \frac{\sqrt{5}-1}{4}. Therefore, 2sin18=2(514)=5122\sin 18^\circ = 2 \left(\frac{\sqrt{5}-1}{4}\right) = \frac{\sqrt{5}-1}{2}. Thus, e2=2sin18e^2 = 2\sin 18^\circ.