Solveeit Logo

Question

Question: If $\begin{pmatrix} a, & \frac{1}{a} \end{pmatrix}$, $\begin{pmatrix} b, & \frac{1}{b} \end{pmatrix}...

If (a,1a)\begin{pmatrix} a, & \frac{1}{a} \end{pmatrix}, (b,1b)\begin{pmatrix} b, & \frac{1}{b} \end{pmatrix}, (c,1c)\begin{pmatrix} c, & \frac{1}{c} \end{pmatrix} and (d,1d)\begin{pmatrix} d, & \frac{1}{d} \end{pmatrix} are four distinct points on a circle of radius 4 units then, abcd is equal to

A

4

B

1/4

C

1

D

16

Answer

1

Explanation

Solution

The four distinct points are given in the form (x,1/x)(x, 1/x). Let these points be P1(a,1/a)P_1(a, 1/a), P2(b,1/b)P_2(b, 1/b), P3(c,1/c)P_3(c, 1/c), and P4(d,1/d)P_4(d, 1/d). These points lie on a circle of radius R=4R=4 units. The general equation of a circle with center (h,k)(h, k) and radius RR is: (xh)2+(yk)2=R2(x-h)^2 + (y-k)^2 = R^2 Given R=4R=4, the equation is: (xh)2+(yk)2=16(x-h)^2 + (y-k)^2 = 16 Since the points (a,1/a)(a, 1/a), (b,1/b)(b, 1/b), (c,1/c)(c, 1/c), and (d,1/d)(d, 1/d) lie on this circle, their coordinates must satisfy the circle's equation. For any point (x,1/x)(x, 1/x) on the circle, we have: (xh)2+(1xk)2=16(x-h)^2 + \left(\frac{1}{x}-k\right)^2 = 16 Expanding this equation: x22hx+h2+1x22kx+k2=16x^2 - 2hx + h^2 + \frac{1}{x^2} - \frac{2k}{x} + k^2 = 16 Multiplying by x2x^2 to eliminate fractions (note x0x \neq 0): x42hx3+h2x2+12kx+k2x2=16x2x^4 - 2hx^3 + h^2x^2 + 1 - 2kx + k^2x^2 = 16x^2 Rearranging into a quartic equation: x42hx3+(h2+k216)x22kx+1=0x^4 - 2hx^3 + (h^2 + k^2 - 16)x^2 - 2kx + 1 = 0 The roots of this quartic equation are a,b,c,a, b, c, and dd. By Vieta's formulas, the product of the roots of Ax4+Bx3+Cx2+Dx+E=0Ax^4 + Bx^3 + Cx^2 + Dx + E = 0 is E/AE/A. In this equation, A=1A=1 and E=1E=1. Therefore, the product of the roots abcd=1/1=1abcd = 1/1 = 1.