Solveeit Logo

Question

Question: If A, B, C are three matrices of order 2, such that $|A| = -2, |B| = 2, |C| = 10,$ find the value ...

If A, B, C are three matrices of order 2, such that

A=2,B=2,C=10,|A| = -2, |B| = 2, |C| = 10,

find the value of k=A+BC+B+CA+C+AB+A+B+C.k = |A + B - C| + |B + C - A| + |C + A - B| + |A + B + C|. (|A| denotes the determinant of matrix A)

A

40

B

30

C

20

D

10

Answer

40

Explanation

Solution

Let A, B, C be 2×22 \times 2 diagonal matrices of the form A=(a100d)A = \begin{pmatrix} a_1 & 0 \\ 0 & d \end{pmatrix}, B=(b100d)B = \begin{pmatrix} b_1 & 0 \\ 0 & d \end{pmatrix}, C=(c100d)C = \begin{pmatrix} c_1 & 0 \\ 0 & d \end{pmatrix}. Given A=a1d=2|A| = a_1d = -2, B=b1d=2|B| = b_1d = 2, C=c1d=10|C| = c_1d = 10.

We can calculate the determinants of the sums and differences of these matrices:

  1. A+BC=(a1+b1c100d+dd)=(a1+b1c100d)A + B - C = \begin{pmatrix} a_1+b_1-c_1 & 0 \\ 0 & d+d-d \end{pmatrix} = \begin{pmatrix} a_1+b_1-c_1 & 0 \\ 0 & d \end{pmatrix} A+BC=(a1+b1c1)d=a1d+b1dc1d=A+BC=2+210=10|A + B - C| = (a_1+b_1-c_1)d = a_1d + b_1d - c_1d = |A| + |B| - |C| = -2 + 2 - 10 = -10.

  2. B+CA=(b1+c1a100d+dd)=(b1+c1a100d)B + C - A = \begin{pmatrix} b_1+c_1-a_1 & 0 \\ 0 & d+d-d \end{pmatrix} = \begin{pmatrix} b_1+c_1-a_1 & 0 \\ 0 & d \end{pmatrix} B+CA=(b1+c1a1)d=b1d+c1da1d=B+CA=2+10(2)=14|B + C - A| = (b_1+c_1-a_1)d = b_1d + c_1d - a_1d = |B| + |C| - |A| = 2 + 10 - (-2) = 14.

  3. C+AB=(c1+a1b100d+dd)=(c1+a1b100d)C + A - B = \begin{pmatrix} c_1+a_1-b_1 & 0 \\ 0 & d+d-d \end{pmatrix} = \begin{pmatrix} c_1+a_1-b_1 & 0 \\ 0 & d \end{pmatrix} C+AB=(c1+a1b1)d=c1d+a1db1d=C+AB=10+(2)2=6|C + A - B| = (c_1+a_1-b_1)d = c_1d + a_1d - b_1d = |C| + |A| - |B| = 10 + (-2) - 2 = 6.

  4. A+B+C=(a1+b1+c100d+d+d)=(a1+b1+c1003d)A + B + C = \begin{pmatrix} a_1+b_1+c_1 & 0 \\ 0 & d+d+d \end{pmatrix} = \begin{pmatrix} a_1+b_1+c_1 & 0 \\ 0 & 3d \end{pmatrix} A+B+C=(a1+b1+c1)(3d)=3(a1d+b1d+c1d)=3(A+B+C)=3(2+2+10)=3(10)=30|A + B + C| = (a_1+b_1+c_1)(3d) = 3(a_1d + b_1d + c_1d) = 3(|A| + |B| + |C|) = 3(-2 + 2 + 10) = 3(10) = 30.

Now, we sum these determinants to find kk: k=A+BC+B+CA+C+AB+A+B+Ck = |A + B - C| + |B + C - A| + |C + A - B| + |A + B + C| k=(10)+(14)+(6)+(30)k = (-10) + (14) + (6) + (30) k=40k = 40.

This result is independent of the choice of dd (as long as d0d \neq 0, which is implied by A,B,C|A|, |B|, |C| being non-zero). This specific construction suggests that the value of kk is indeed constant for any matrices A, B, C satisfying the conditions, provided they can be represented in this form or that the general case simplifies to this. The problem implies a unique answer, and this method provides one.