Solveeit Logo

Question

Question: If 'a' and 'b' are distinct zeroes of the polynomial $x^3-2x+c$ and $a^2(2a^2+4ab+3b^2)=3$ then $b^2...

If 'a' and 'b' are distinct zeroes of the polynomial x32x+cx^3-2x+c and a2(2a2+4ab+3b2)=3a^2(2a^2+4ab+3b^2)=3 then b2(3a2+4ab+2b2)b^2(3a^2+4ab+2b^2) is equal to :

A

3

B

4

C

5

D

6

Answer

3

Explanation

Solution

The polynomial is P(x)=x32x+cP(x) = x^3 - 2x + c.

Since 'a' and 'b' are distinct zeroes of P(x)P(x), we have:

a32a+c=0    c=2aa3(1)a^3 - 2a + c = 0 \quad \implies c = 2a - a^3 \quad (1)

b32b+c=0    c=2bb3(2)b^3 - 2b + c = 0 \quad \implies c = 2b - b^3 \quad (2)

Equating (1) and (2):

2aa3=2bb32a - a^3 = 2b - b^3

b3a3=2b2ab^3 - a^3 = 2b - 2a

Factorizing both sides:

(ba)(b2+ab+a2)=2(ba)(b-a)(b^2+ab+a^2) = 2(b-a)

Since 'a' and 'b' are distinct, ba0b-a \neq 0. We can divide both sides by (ba)(b-a):

a2+ab+b2=2(3)a^2+ab+b^2 = 2 \quad (3)

Let the given expression be E1=a2(2a2+4ab+3b2)E_1 = a^2(2a^2+4ab+3b^2). We are given E1=3E_1 = 3.

Let the expression to be found be E2=b2(3a2+4ab+2b2)E_2 = b^2(3a^2+4ab+2b^2).

Let's manipulate E1E_1 using the relation a2+ab+b2=2a^2+ab+b^2=2.

We can rewrite the term (2a2+4ab+3b2)(2a^2+4ab+3b^2) as follows:

2a2+4ab+3b2=2(a2+ab+b2)+2ab+b2=2(2)+2ab+b2=4+2ab+b22a^2+4ab+3b^2 = 2(a^2+ab+b^2) + 2ab + b^2 = 2(2) + 2ab + b^2 = 4 + 2ab + b^2.

So, E1=a2(4+2ab+b2)=4a2+2a3b+a2b2E_1 = a^2(4+2ab+b^2) = 4a^2 + 2a^3b + a^2b^2.

Thus, we have 4a2+2a3b+a2b2=3(4)4a^2 + 2a^3b + a^2b^2 = 3 \quad (4).

Now, let's manipulate E2E_2 using the relation a2+ab+b2=2a^2+ab+b^2=2.

We can rewrite the term (3a2+4ab+2b2)(3a^2+4ab+2b^2) as follows:

3a2+4ab+2b2=2(a2+ab+b2)+a2+2ab=2(2)+a2+2ab=4+a2+2ab3a^2+4ab+2b^2 = 2(a^2+ab+b^2) + a^2 + 2ab = 2(2) + a^2 + 2ab = 4 + a^2 + 2ab.

So, E2=b2(4+a2+2ab)=4b2+a2b2+2ab3(5)E_2 = b^2(4+a^2+2ab) = 4b^2 + a^2b^2 + 2ab^3 \quad (5).

Notice the symmetry between equations (4) and (5).

If we swap 'a' and 'b' in equation (4), we get:

4b2+2b3a+b2a2=34b^2 + 2b^3a + b^2a^2 = 3.

This is exactly the expression for E2E_2 (equation 5).

Since the relation a2+ab+b2=2a^2+ab+b^2=2 is symmetric in 'a' and 'b', and the expression we need to find is symmetric to the given expression when 'a' and 'b' are swapped, the value of E2E_2 must be the same as E1E_1.

Therefore, b2(3a2+4ab+2b2)=3b^2(3a^2+4ab+2b^2) = 3.