Solveeit Logo

Question

Question: If $3\hat{j}$, $4\hat{k}$ and $3\hat{j}+4\hat{k}$ are position vectors of the vertices A, B, C respe...

If 3j^3\hat{j}, 4k^4\hat{k} and 3j^+4k^3\hat{j}+4\hat{k} are position vectors of the vertices A, B, C respectively of ABC\triangle ABC, then the position vector of the point in which the bisector of A\angle A meets BC is

A

53j^4k^\frac{5}{3}\hat{j}-4\hat{k}

B

5j^4k^5\hat{j}-4\hat{k}

C

5j^+4k^5\hat{j}+4\hat{k}

D

53i^+4k^\frac{5}{3}\hat{i}+4\hat{k}

Answer

53j^+4k^\frac{5}{3}\hat{j}+4\hat{k}

Explanation

Solution

Let the vertices be

A=3j^,B=4k^,C=3j^+4k^.A=3\hat{j},\quad B=4\hat{k},\quad C=3\hat{j}+4\hat{k}.

In triangle ABC, the bisector of A\angle A meets side BC. By the Angle Bisector Theorem, if D is the point on BC where the bisector meets, then

BDDC=ABAC.\frac{BD}{DC}=\frac{AB}{AC}.

Step 1. Find lengths ABAB and ACAC.

  • AB=AB=3j^4k^=32+42=5.AB = |A-B| = |3\hat{j} - 4\hat{k}| = \sqrt{3^2 + 4^2} = 5.
  • AC=AC=3j^(3j^+4k^)=4k^=4.AC = |A-C| = |3\hat{j} - (3\hat{j}+4\hat{k})| = | - 4\hat{k}| = 4.

Thus,

BDDC=54.\frac{BD}{DC}=\frac{5}{4}.

Step 2. Write the position vectors of B and C:

B=4k^,C=3j^+4k^.B=4\hat{k},\quad C=3\hat{j}+4\hat{k}.

Using the section formula, the position vector of D (dividing BC in the ratio BD:DC=5:4BD:DC = 5:4) is given by:

D=4B+5C5+4=4(4k^)+5(3j^+4k^)9.\vec{D}=\frac{4\,B + 5\,C}{5+4}=\frac{4(4\hat{k})+5(3\hat{j}+4\hat{k})}{9}.

Calculate:

4(4k^)=16k^,5(3j^+4k^)=15j^+20k^.4(4\hat{k})=16\hat{k},\quad 5(3\hat{j}+4\hat{k})=15\hat{j}+20\hat{k}.

Thus,

D=15j^+(16+20)k^9=15j^+36k^9=53j^+4k^.\vec{D}=\frac{15\hat{j}+(16+20)\hat{k}}{9}=\frac{15\hat{j}+36\hat{k}}{9}=\frac{5}{3}\hat{j}+4\hat{k}.

Therefore, the correct answer is 53j^+4k^\frac{5}{3}\hat{j}+4\hat{k}, which does not match any of the options exactly.